Archive for the ‘Astronomy’ Category

Relativistic Philosophy Beyond Consensus

August 4, 2017

It’s good to focus on “General Relativity” and Cosmology without the cloak of mathematics gone wild and unsupervised, indeed.

Anything having to do with “General Relativity” has a lot of extremely debatable philosophy hidden below a thick carpet of computations. Abuse of philosophically unsupervised spacetime leads one to believe in time machines, wormholes, and similar absurdities. A recent discovery such as Dark Energy (ever expanding space faster than previously anticipated), and a not so recent one, Dark Matter, show one has to be extremely careful.

Einstein equation of “General Relativity” (GR) is basically Curvature = Mass-Energy. Einstein long observed that the left hand side of the equation was built of mathematical beauty, and the right hand side of a murky mud of a mess. The discovery of Dark Matter proved him prophetic about that. (BTW, I know perfectly well that, stricto sensu, it’s the Ricci tensor, derived from the full Curvature tensor on the left…)

First a philosophical trap: “General Relativity” (GR) is a misnomer. It’s not clear what’s being generalized. GR is certainly a theory of the relationship between gravity and local space-times (the Theory of Relativity of space and time which Poincaré named that way in 1904).

Einstein was initially motivated to explain inertia according to the Newton-Mach observation that the distant stars seemed to endow matter with inertia (because if matter rotates relative to distant stars, a centrifugal force appears).

That way, he failed, as Kurt Goedel produced spacetime models which rotated wildly without local consequences. Frame dragging exists nevertheless, and is crucial to GPS. So GR has local consequences.

Neither Poincaré nor Einstein liked the concept of “spacetime”.

There are massive galaxy cluster, such as Abell 370 (shown here). They can be made up of thousands of Milky Way-sized galaxies. This is beyond anything we can presently have a feeling for. The space inside this cluster is not expanding, that’s a fact, but the space between this cluster and other, unbound, galaxies and clusters, is viewed by today’s Main Stream Cosmology, as expanding. I’m robustly skeptical. Image credit: NASA, ESA/Hubble, HST Frontier Fields.

A question has naturally come up: if space expands, how come we don’t? An answer to this has been the raisin bread model of the expanding universe.

As Sabine Hossenfelder, a theoretical physicist in Quantum Gravity and High energy physics  puts it: “In cosmology, too, it helps to first clarify what it is we measure. We don’t measure the size of space between galaxies — how would we do that? We measure the light that comes from distant galaxies. And it turns out to be systematically red-shifted regardless of where we look. A simple way to describe this — a space-time slicing that makes calculations and interpretations easy — is that space between the galaxies expands.”

However, the entire area is contentious. The usual snap-back of haughty physicist keen to deny any brains worth noticing to the Commons, is to say that all those who don’t understand the mathematics at hand should shut up.

That’s a disingenuous answer, as NOBODY understands fully the mathematics at hand (those with snappy rejoinders know this, but they enjoy their power maliciously).

An example of the non-universality of the notion of expanding space is the following exact quote from Physics Nobel Laureate Steven Weinberg, author, among many other things, such as the Weinberg-Salam model of the electroweak interaction, of the most famous textbook on the subject, “Gravitation and Cosmology”: “…how is it possible for space, which is utterly empty, to expand? How can nothing expand? The answer is: space does not expand. Cosmologists sometimes talk about expanding space, but they should know better”

Well, they don’t.

Reference https://www.physicsforums.com/threads/raisin-bread-model-of-space-time.901290/

Personally, I think that both space and time are local concepts (as long as one does not add to consideration the Quantum theory, as it was created, post 1923, by De Broglie, and after 1924, by the Copenhagen School). Local space and local time are united by the speed of light, c, through naturally ubiquitous light clocks. Space and time are measured locally (although Poincaré proposed a slow motion to move synchronized clocks around, and Einstein copied and published that mechanism, verbatim, as he had with E = m c²).

It has been proposed that the redshift of cosmological photons, and its attribution, 100%, to the expansion of spacetime, is a proof of the expanding “spacetime”. One must say that this statement is the core of present cosmology. And anybody looking down on the idea will not be viewed as serious by famous physicists. However just saying something does not prove it. Especially when the conclusion seems to be the hypothesis.

Lorentz- Poincaré Local Space and Time theory was experimentally provable (electromagnetism proved it).

But where is the proof that the universe is like an expanding dough, spacetime, with galactic raisin grains in it? Just waving the notion that the atomic force is 10⁴⁰ the gravitation force at a small scale does not seem compelling to me. It’s rather a question of range: gravitation is much longer range, although, much weaker. Thus the geodesic deviations due to gravitation show up at a very great distance, whereas those due to atomic and molecular force cause enormous geodesic deviations, but only at very short range. We are these enormous local deviations, larger by 10⁴⁰ locally.

Yet, even this more precise argument smacks of hand waving.  Why? Because a theory of local forces as curvatures, although posited by Riemann in 1865, and the foundation of GR, still does not exist (that’s one thing string theory was trying to achieve, and failed). Gravitation remains the only force that is tautologically equivalent to a curved space theory.

Quantum Physics has provided that theoretical spacetime with a nonlocal causal architecture (through Quantum Entanglement). However that “causality” although geometric, is non metric (and thus manifests itself with no geodesic deviation, no force).

Einstein, after a debate on nonlocality imparted by the Quantum, with the Austrian philosopher Karl Popper, attracted the world’s attention on that problem in 1935, with his famous EPR paper. There Einstein denounced the way the “spooky action at a distance” affected distant “elements of reality”. Since then, the spookiness at a distance has been amply confirmed (and enables to encrypt space communications while knowing 100% whether they have been breached, as a Chinese satellite recently showed). Nonlocal effects show unambiguously that the metric (of “spacetime”) does not capture all the geometry (an notion which may surprise physicists, but not those mathematicians who have studied the foundations of their field).

This Quantum architecture has led, so far, to no prophecy, let alone theory, by established physicist. Entangled Quantum architecture is actually not part of the General Relativistic raisin cake model (or any GR model). However, I will venture to say one can view it as predicting Dark matter, at the very least. It’s just a question of baking something more sophisticated than raisin bread.

Patrice Ayme

Advertisements

Olber’s Paradox Solved, Yesterday, Now & Tomorrow

June 15, 2017

The oldest cosmological paradox considers the fact that the night sky should not appear dark in an infinite, ageless Universe. It should glow with the brightness of a stellar surface, because, if we look far enough, we would see some star.

Possible explanations have been considered to get rid of the problem. Here are the most obvious:

  1. There’s too much dust to see distant stars. (This was Heinrich Olbers’ attempted explanation, in 1826. If true, it showed the universe was young! Olbers had several predecessors, including Kepler and Jean-Philippe de Chéseaux in the 1720s… But a German name beats a French one, in the matter of Anglo-Saxon fame….)
  2. The Universe has only a finite number of stars.
  3. The distribution of stars is not uniform. So, for example, there could be an infinity of stars, but they hide behind one another so that only a finite angular area is subtended by them.
  4. The Universe is expanding, so distant stars are red-shifted into obscurity.
  5. The Universe is young. Distant light hasn’t even reached us yet.

Galaxies Galore! Hubble Ultra Deep Field 2014. Other Hubble Pictures Within our own Milky Way giant galaxy, show nearly solid wall of stars, that is, the Olber’s effect!

The first attempted explanation is wrong, because dust will heat up too. If it didn’t heat up, that means the universe is young. (So Olbers could have predicted that! Or a finite universe!)

The premise of the second explanation may technically be correct. But that means that the universe is finite. The third explanation may be partially correct, because matter is very far from being uniformly distributed in the universe. We just don’t know how severe the lumping is: there are Great Walls (of galaxies!), Great Attractors (of galaxies!), Great Blobs (of quasars!), etc. If the stars are distributed in a lumpy way, then there could be large patches of empty space (which there is, because they have been seen!), so the sky could appear dark except in those directions.

Look far enough, you will hit a galaxy! At least if light does not somehow age…

The final two possibilities are presently viewed as correct by common cosmologists, and a cause of what’s observed. Some computational arguments suggest that the finite age of the Universe is the larger effect. We live inside a spherical shell of “Observable Universe” which has a diameter equal to the (“Cartan’s comoving”) distance covered by the expanding  universe during the lifetime of said Universe. That’s 95 billion light-years, according to the most esteemed conventional computation. Objects which were far enough to start with,  are too far away for their light ever to reach us.

The resolution of Olber’s paradox is found in the combined observation that 1) the speed of light is finite and 2) the Universe has a finite age, i.e. we only see the light from parts of the Universe which at some point in time where less than 15 billion light years away. Everywhere far away, say the conventionalists, we should see the fiery light of the Big Bang, and we do, they add: this is the 3 degree Kelvin background cosmic radiation. Initially it was hyper hot, but the light got stretched in the last 13.8 billion years, by the expansion of the universe, so now it appears very cold… (Except that I have a different explanation for it!)

And now for a word from our sponsor:

***

Subquantum Cosmology’s Olber’s Paradox Resolution:

How does my own SubQuantum Patrice Reality (SQPR) theory fits in all this? Very well. In my theory, the universe also expands (that’s called “Dark Energy”, and it’s a direct experimental fact). But the universe expands slowly (that’s how I resolve the problems “cosmological inflation” is supposed to resolve, but doesn’t!).

As the universe slowly expands, every single photon wave gets stretched, as in the usual Big Bang Lemaitre metric. However now that effect is not enough to solve Olbers paradox (the expansion being too slow). So another effect comes into play: light ages, from the Sub Quantum Reality (SQPR). The average photon coming from far away is so spread-out, when it hits an object, somewhere, that part of said photon is too far to coalesce with the rest, thus gets disconnected from the main singularization, and is left, in the average, as a 3 Kelvin remnant.

***

Notice that Olbers and his predecessors could have deduced much from the simple fact that the sky was not all like the surface of the sun. Olbers said: that’s because there is dust. But ultimately dust would turn as yellow and hot as the sun too. It didn’t, either because the density of stars was not constant… Or then the universe was only 6,000 years old, or so (;-)).
This being said, dust should not be ignored. Recently, it was proclaimed a proof of cosmological inflation had been found, and eminent cosmologists such as inflationistas like Guth were already attributing to themselves the Nobel Prize, but it was only an effect due to galactic dust.

Conclusion: a simple observation can very well contain revolutionary science, when, and if, logically processed. But one needs courage to do this. An obvious candidate is the collapse of the “wave packet” in Quantum Physics. Attempts to ignore, or deny that collapse, have brought the “Many Worlds” Derangement Syndrome affecting physics (and not just physics, thanks to mood transmission…)

Patrice Ayme’

DARK MATTER EMERGENCE! (If so, is a New Quantum revolution at hand?)

March 31, 2017

Long story short: My own theory of Dark Matter predicts that Dark Matter is EMERGENT. That could be viewed as a huge flaw, easy to disprove, sending me back to a burrow somewhere to pursue my humble subterranean existence of sorts. HOWEVER, big surprise: DARK MATTER EMERGENCE seems to be exactly what was just observed in 2017, at the European Southern Observatory (ESO)!

***

Anomalies in the behavior of gravitation at a galactic scale, has become the greatest crisis in physics. Ever:

What is the problem? Four centuries of physics possibly standing on its head! (Using the virial theorem,) Swiss astronomer Fritz Zwicky discovered and named Dark Matter, or, as Zwicky said in German,  “dunkle Materie“, in 1933. Zwicky observed an enormously mysterious gravitational pull.

Zwicky computed that the observed gravitational pull did not correspond to the visible matter, by an ORDER OF MAGNITUDE, and thus Zwicky assumed that there was plenty of matter that could not be seen. (At the time, physicists scoffed, and went to stuff more interesting to the military, thus, better esteemed and more propitious to glorious splurging and handshakes from political leaders!)

If spiral galaxies were only made up of the matter that we can see, stars at the outer edge should orbit the centre slower than those closer to the center.. But Zwicky  noticed that this was not the case: all the stars in the Andromeda galaxy move at similar speeds, regardless of their distance from the galactic center. (For nationalistic reasons Americans love to attribute DM’s discovery to American astronomers Vera Rubin and Kent Ford .in the 1970s. However great Vera Rubin is, that’s despicable: they worked 40 years after Zwicky.)

Many studies since the 1930s provided evidence for Dark Matter. Such matter doesn’t interact with light, that’s why it is dark. Thus, one can only observe the effects of Dark Matter via its gravitational effects.

Nobel Prizes Were Only Given To the 5% So Far. The 5% Are All What Today’s Official Physics Is About. This Is One Of The Reasons Why I Am Thinking Outside Of Their 5% Box…

***

How does one compute the mass of a galaxy?

One just look at how many stars it has. (In the Solar System, the sun is a thousand times more massive than all the planets combined; studies on how much stars are moved by the planets around them confirm that most of the mass is in the stars.) And that shows up as the overall light emitted by a galaxy. Summing up the observed light sums up the mass. Or, at least that was the long-standing idea. (More recently, the pull gravitation exerts on light has been used to detect Dark Matter, and it has been used on a… massive scale!) 

At the scale of galaxies, or galactic clusters, the motions of objects is indicating at least ten times the gravitational force that should be there, according to gravitation theory, considering the mass we see (that is the mass of all the stars we see).

Problem: that would mean that he so-called “Standard Model” of physics has no explanation for most of the mass in the galactic clusters.

Reality check: the celebrities of physics are very arrogant, and think they know exactly what the universe had for breakfast, 13.8 billion years ago, and how big it was (never mind that their logic is ridiculously flawed). Up to a few years ago, many were in denial that they were missing most of the mass-energy in the universe with their Standard Model theory. 

However, here they are now, having to admit they missed 95.1&% of the mass-energy in the universe (according to their own latest estimates)!

A low logical cost solution to the riddle of the apparently missing mass, was to decree that all physicists who have studied gravitation since Bullialdus, nearly four centuries ago, got it wrong, and that gravitation is not, after all, an inverse square of the distance law. A problem is that French astronomer Bullaldius’ very elementary reasoning seems still to have kept some validity today. Remember that, in the Quantum Field Theory setting, forces are supposedly due to (virtual) particle exchanges? Well, that was the basic picture Bullialdus had in mind! (Thus those who want to modify so-called “Newtonian Dynamics” wreck the basic particle exchange model!)

***

Bullialdus’ Inverse Distance Squared Law, Basic to Newton-Eintein:

Ismael Boulliau (aka Bullialdus) a famous astronomer, member of the English Royal Society, proposed the inverse square law for gravity, a generation before Newton. (Bullialdus crater on the Moon, named for Boulliau, would have water, by the way.) Boulliau reasoned that the force would come from particles emitted by the sun, just like light. Here is Bullialdus voice:

“As for the power by which the Sun seizes or holds the planets, and which, being corporeal, functions in the manner of hands, it is emitted in straight lines throughout the whole extent of the world… seeing that it is corporeal, it becomes weaker and attenuated at a greater distance or interval, and the ratio of its decrease in strength is the same as in the case of light, namely, the duplicate proportion, but inversely, of the distances that is, 1/d².”

Why still true today? The carrier of force are particles.If they go to infinite distance (as electromagnetism and gravitation do), then the density of filed carriers (photons, gravitons) will go down, as Bullialdus said, for the reason he gave.

Bullaldius’ observation is the basis of Newton’s gravitation theory, which is itself the first order approximation of Einstein’s theory of gravitation. (Einstein’s gravitaion is a tweak on Newton’s theory; what Einstein did is actually to re-activate Buridan’s inertial theory with advanced mathematics invented by others (Riemann, Ricci, Hilbert, Levi-Civitta)

There is a basic problem here: although Einstein’s theory is a small tweak on Newton’s, MONDs are not. Correcting a theory by a factor of ten, a hundred, or a thousand is no tweak. Moreover: 

The ESO (European Southern Observatory) observation, illustrated above by ESO itself, seems to condemn BOTH of the two known, “official”classes of solutions for the gravitation problem: LCDM Dark Matter and Mond. The only theory left standing is my own Sub Quantic Dark Matter theory, which is fully emergent.

***

2017 ESO Discovery: Slowly Spinning Old Galaxies:Natascha Förster Schreiber at the Max Planck Institute for Extraterrestrial Physics in Germany and her colleagues have used the European Very Large Telescope in Chile to make the most detailed observations so far of the movement of six giant galactic discs, 10 billion years ago.

They found that, unlike in (quasi-)contemporary galaxies, the stars at the edges of these galaxies long ago, far away, move more slowly than those closer in.

“This tells us that at early stages of galaxy formation, the relative distribution of the normal matter and the dark matter was significantly different from what it is today,” says Förster Schreiber. (Well, maybe. MY interpretation would be very different! No DM!)

In order to check their unexpected results, the researchers used a “stack” of 101 images of other early galaxies to find an average picture of their rotations. The stacked galaxies matched the rotations of the more rigorously studied ones. “We’re not just looking at six weirdo galaxies – this could be more common,” says Förster Schreiber. “For me, that was the wow moment.”

***

MOdified Newtonian Dynamics (MONDs) Don’t Work:

About 10 billion years ago, there was a peak formation period of galaxies. By looking 10 billion light years away, one can see what was going on then, and have plenty of galaxies to look at. Where was the Dark Matter there? Was there Dark Matter then? One can answer these questions by just looking, because Dark Matter shows up in the way galaxies rotate, or orbit (in galactic cluster).

The result is both completely unexpected and spectacular! I am thrilled by it, because what is observed to happen is exactly the main prediction of MY theory of Dark Matter!

What is found is that, ten billion years ago, the largest star-forming galaxies were dominated by normal matter, not by the dark matter that’s so influential in galaxies today. (I reckon that this result was already indicated by the existence of galaxies which are mostly Dark Matter… at least in my sort of cosmology which differs massively from the standard Lambda Cold Dark Matter, LCDM model.)

MOND theories, relativistic or not, say that gravity is ten times stronger at, say, 30,000 light years away from a mass. If that’s the true law of gravitation in the last few hundreds of millions of years (as observed in presently surrounding galaxies), it should have been the case ten billion years ago. But that’s not what’s observed. So MOND theories can’t be true

***

LCDM cop-out: Dark Matter makes halos, like around the Virgin Mary’s Head!

On the face of it, the discovery about those ten billion year old galaxies say that the galactic disks then did not contain Dark Matter. That seems to me that it shoots down both MOND theories and the LCDM model (that’s the fancy name for the conventional Big Bang, latest version).

However, conventional scientists, and, in particular, cosmologists, are good at pirouettes, that’s why they are professionals.  There is still a (twisted) logical escape for LCDM model. The differences in early galaxies’ rotations demonstrates that there is very little Dark Matter in towards the middle of their disks, to start with, reason the Cold Dark Matter specialists. Instead, those ancient galaxies’ disks are almost entirely made up of the matter we see as stars and gas. The further away (and thus earlier in cosmic history) the galaxies were, the less dark matter their disks contained.

The specialists suggest that the turbulent gas in early galaxies condensed into the flat, rotating disk shapes we see today more quickly than Dark Matter, which remained in a diffuse  “halo”, which would progressively fall in… but had not started to falling enough, ten billion years ago. (That’s weird, because I thought LCDM mixed normal matter and dark matter, right from the start. In any case, I am not going to make their increasingly fishy case for them!).

Dark Matter gathers – but it takes time. This is exactly what my theory of Dark Matter predicts. In my own theory, Dark Matter is the result, the debris, of Quantum Interactions (entanglement resolutions, singularization) at very large distances. This debris gathering takes time.

My Dark Matter theory predicts that Dark Matter is an Emergent phenomenon. No other theory does that. Studies of more than 100 old giant galaxies support my theory, why making the situation (very) difficult for the conventional Dark Matter theory (“LCDM”) and impossible for the MOND theories.

This progressive build-up  of Dark Matter is NOT predicted by the other two Dark Matter theories. The standard (LCDM) cosmological Dark Matter model does NOT predict a slow gathering of Dark Matter. Nor does the  MOdified Newtonian Dynamics theories (MOND, relativistic or not) predict a slow apparition of Dark Matter.m the center and most of the visible matter.

It has been taken for granted by the Dark Matter advocates that Dark Matter, a sort of non-standard standard matter, was in the universe from its legendary start, the Big Boom, aka, Big Bang,

This is an important step in trying to figure out how galaxies like the Milky Way and larger galaxies must have assembled,” says Mark Swinbank at Durham University. “Having a constraint on how early the gas and stars must have formed the discs and how well-mixed they were with dark matter is important to informing their evolution.”

Journal reference: Nature, DOI: 10.1038/nature21685

Right. Or maybe, as I speculate, for plenty of excellent reasons coming from logically far away, this is an indication that not Gravitation Theory, but Quantum Theory, is not correct. Oh, the Standard Model, too, is not correct. But we all already knew this…

Conclusion: If the ESO observation that Dark Matter was not present in large galactic disks, ten billion years ago, is correct, I cannot imagine how MOdified Newtonian Dynamics theories could survive. And I find highly implausible that LCDM would. All what is left standing, is my own theory, the apparent main flaw of which, is now turned into a spectacular prediction! DARK MATTER Appears SLOWLY as predicted by Patrice Ayme’s SUB-QUANTIC Model. (Wow!)

Patrice Ayme’

Super Earths Galore?

March 5, 2017

[Original research, as usual, explaining in a bit more detail the preceding essay, its allusions, and its background: I pointed out that Venus failed as a livable planet because of its different internal composition. I turn then that argument around to demonstrate habitable large “Super Earths” are perfectly plausible, because “Super-Earth” does not have to mean “Super-Gravity”. I ponder the reasons pushing some astrophysicists to be so dead set against Super-Earths, and track that to the usual submission to the present plutocratic Zeitgeist.]

***

Usually, among astronomers, the term “Super-Earth” denotes a ROCKY planet with a mass higher than Earth’s. This does not imply anything about the surface conditions, habitability, or the potential presence of indigenous life.

In the Solar System’s icy gas giants Uranus and Neptune are 15 and 17 Earth masses respectively. My idea behind the concept of Super-Earths is to avoid “Gas Dwarfs”, also called “Mini-Neptunes”, by keeping the mass low enough.

What matters, to determine the livability of a rocky planet, is its surface gravity, and its composition regarding water and magnetism. It’s not as simple as Huyghens had it: “How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our Wars are transacted, is when compared to them.” -Christiaan Huygens (17th Century; Huyghens was financed by the tyrannical Super Plutocrat Louis XIV, an intriguing twist).

3,500 planets have been found around other stars (March 2017; the High Provence observatory found the first, and then the French satellite Corot found plenty, followed by NASA’s Kepler). A great percentage of them are Super Earths in the usual sense of being more massive than Earth, but less than Uranus.

In my terminology, a large Super Earth is not necessarily a gas giant. It may well be livable. (The reason to insist on all this is that I want money for super-telescopes, which are technically feasible, now; it’s just a question of money! If one listens to Siegel/Forbes below, one would decided to only finance financiers, since they pay more…)

According to my silicate composition argument, livable Super Earths with ten times Earth's mass are imaginable, because they could have Earth-like surface gravity... Astrophysicists paid by plutocrats don't think so (thus money is best spent on their sponsors... Instead of telescope!)

According to my silicate composition argument, livable Super Earths with ten times Earth’s mass are imaginable, because they could have Earth-like surface gravity… Astrophysicists paid by plutocrats don’t think so (thus money is best spent on their sponsors… Instead of telescope!)

***

Ethan Siegel, a celebrity astrophysicist who writes for Forbes magazine, disagrees with the whole mood behind the concept of “Super Earth”.

Siegel claims that Super Earths are never habitable, let alone earthly: “There’s no such thing as a ‘habitable Super-Earth’. Earth is pretty much the limit of how large you can get and still be rocky. Anything much larger, and you’re a gas giant.

Bemoans Siegel: “For a long time, we thought our Solar System was the template for the planets we’d find in the Universe. Inner, rocky worlds dominate the hottest part of the Solar System, with large, gaseous planets orbiting much farther out. The largest rocky planet was Earth; the smallest gas giant was Uranus; the mass difference between the two was a factor of 17, with Uranus having four times Earth’s radius. So it was quite a surprise when exoplanet discoveries started rolling in. Not only can planets of various sizes and masses appear anywhere in a solar system’s orbit, but of all the mass-and-size combinations out there, the most common type of planet is one we don’t have at all: a Super-Earth.

May these worlds be home to the realizations of our extraterrestrial dreams? Ethan Siegel arrogantly nix the idea: “… a cold, hard look at the scientific facts — and at the physics behind planetary science — puts the kibosh on that in no uncertain terms. In fact, the most up-to-date science tells us that the very idea that there is such a thing as a “Super-Earth” is a failing on our part.

Imagining What's On The Left, Kepler 22 b as a livable Super Earth is a "failing on our part" say Forbes employed astrophysicists. Massive wealth inequality caused by lack of infrastructure, though is, presumably not a "failing on our part".

Imagining What’s On The Left, Kepler 22 b as a livable Super Earth is a “failing on our part” says Forbes employed astrophysicist. Massive wealth inequality caused by lack of infrastructure, though is, presumably not a “failing on our part”.

Ethan Siegel again:

“The planets that we’re searching for, ostensibly, are the ones that are the most Earth-like: with similar compositions, atmospheres, masses, temperatures and other conditions to our world. But until we actually find life on another world — or learn a whole lot more about these planets we’re only beginning to discover — we can’t be sure which conditions are mandatory for intelligent life and which ones are mere happenstance. When we classify worlds as Earth-like, we look to their radius and how much energy they receive from their star.

In the past, we’ve typically said that if these worlds are approximately the size of Earth and receiving approximately as much energy-per-square-meter as Earth, these are likely Earth-like worlds. But this was an assumption that we made prior to having enough data to draw a conclusion… thanks to follow-up observations of their pull on their parent star, we’ve obtained the mass for hundreds of these worlds. And the conclusion they point to is damning.”

The basic argument Ethan (and others from MIT, etc.) hint to is that Super Earths have such a high surface gravity, they hang onto considerable amounts of hydrogen and helium. Then the atmosphere becomes crushing, life can’t develop.

Professor Ethan claims, without iron-clad evidence that:

… the transition from “rocky” world to “gaseous” world occurs at just twice the Earth’s mass. If you’re more that twice the mass of Earth and you receive the same amount of energy from your star, you’ll be able to hold onto a substantial hydrogen-and-helium envelope of gas, creating an atmospheric pressure that’s hundreds or even thousands of times as great as what we have on Earth’s surface. The hope that Super-Earth worlds would be Earth-like is shattered, and we can safely put Super-Earths, Mini-Neptunes and Neptune-like worlds into the same overall category… it’s important to remember that even calling a world a “Super-Earth” is evidence of our bias. “

***

All too many scientists tend to be biased about bias. Why the hysteria?

But I repeat myself: Ethan Siegel works for Forbes.

His preceding conclusion is, In My Not So Humble Opinion (IMNSHO), flawed: it depends upon surface gravity, hence hypotheses about a planet’s internal composition. Basically, those scientists scale up the composition of Earth to Super-Earth”. But we have no proof of that. Quite the opposite, we have indication to the contrary.  

I already talked about Venus. Venus is nearly Earth-size is Venus’ magnetic field is weak, and make the planet appear like a comet (observing with some instrumentation).

Venus shows us a probably different composition: it is less massive because it does have Earth’s heavy radioactive iron core:

***

Primitive Mathematics & Geology Show Surface Gravity Can Be Low On A Super Earth:

The argument is that a Super Earth will have such a high surface gravity that it will trap an excess of hydrogen. Indeed, a planet with twice the radius of Earth will have eight times the mass of Earth. However this multiplication by 8 of its mass m is  true if, and only if, the Super Earth has the same density as Earth. Earth has density 5.5, due to a heavy iron core with density 10. Silicate rocks have only density 3.

If a Super Earth had the same exact composition as Earth, doubling the radius r would change the surface gravity, which is proportional to: m/rr. If m is multiplied by 8 and r by 2, one sees that the surface gravity is multiplied by 2.

However, if the Super Earth is mostly made of Silicates, its mass will just be multiplied by 5, not 8. Thus its surface gravity will only augment by 25%.

If now one considers a super Earth with radius three times Earth, one sees it’s volume will be 27 times greater, but, if made mostly of silicates, its mass will be no more than 15 times greater. Meanwhile 1/rr is roughly 1/10. So the surface gravity, would be only 50% greater.

Thus one sees that Super Earths with surface areas roughly ten times Earth are imaginable.

One could argue that a huge metallic iron core is necessary to create a large magnetic field protecting against radiation, in particular solar storms which may strip the atmosphere (as happened on Mars). And thus one could insist that the preceding is unrealistic that way. But we are sitting next to a mighty yellow star. Red Dwarves, although subject to flares, thus capable of ejecting radiation, may, overall, be less corrosive than Sol (as their energy output is relatively tiny).

The best way to make sure that we cannot have habitable Super Earth is to construct huge telescopes… That means high taxes in the financial sector, that useless vampire (Reminder: Obama brought in all the guys who had deregulated FDR’s financial safeguards, under Clinton in the 1990s; FDR had put those safeguards in roughly 48 hours after becoming president in March 1933!)

***

A grander perspective: Why Is The Anti-Super Earth Crowd So Vociferous?

Ethan Siegel: “But if you insist on calling these worlds Super-Earths, the conclusion is inescapable: whether gaseous or rocky, a Super-Earth is no place for a human.”

I hope that considering my own logic, geophysical logic, Venus, Mars, the stridency of that conclusion is perceived to be unwarranted. Actually  Laura Schaefer of Harvard thinks that surfing on Super Earths is definitively a possibility. According to her computer simulations, it’s easier to have oceans and they last longer (ten billion years) on Super Earths with 3 to 4 times the mass of Earths… http://news.harvard.edu/gazette/story/2015/01/surfing-on-a-super-earth/

Let’s comeback to the strident enemies of livable Super Earths: they suffer from a known malady. This is the usual problem: to become stars, or super-stars, super-scientists jump to unwarranted super-conclusions which are bound to becoming “trending” on the “social networks”. There is little difference between that general mood of people sure of “The First Three Minutes” (who was measuring time, then? “God”, Dog, or super-physicists?) and “Allahu Akbar” (who told them Dog was great, Dog Himself? A friend of theirs?)

This is the moral flaw of (super) tribalism, the “Will To Power”, hubris unbounded, the ardent desire to become top primate, Super Baboon: it flushes, with neurohormones any other worries, makes one feel as if one were god. They all want to be like Obama, get it all, presidency, right of life and death onto the world, multi-billionaire friends, Nobel, etc. Just to forget their pathetic little condition on the Third Rock from Sol.

Well, the deepest thinkers are made of sturdier stuff. Build those telescope, and search for livable Super-Earths. They are out there. Tax those financiers behind Forbes and all plutocrats. Or, rather, tax their robots: most orders in the financial markets are passed by robots which trade in a way that leads the markets: 90% of the robotic orders to buy or sell are cancelled before being enacted.

Build telescopes, not cynicism!

Patrice Ayme’

Venus Shows Habitable Super Earths Are Imaginable

March 4, 2017

I propose that Venus has a different composition from Earth, and this indicates that Super Earths with Earth-like surface gravities are imaginable :

My reasoning is elementary. Venus’ diameter is 600 kilometers less than Earth’s 12,650 kilometers. The volume of a ball is diameter to the power three, so Venus’ volume is 86% of Earth volume. Should Venus and Earth have similar compositions, Venus should therefore be 86% of Earth’s mass.

However, this is not the case: Venus is significantly lower than it should be..

Deviations of man-made probes zooming by showed that Venus’ mass is 81% of Earth’s mass.

Some Venusian mass is missing.

The mass discrepancy is all the more blatant, as Earth is full of water (down to depth 600 kilometers at least). Water is light: it has density 1 (one gram per cubic centimeter). So, if anything, Earth’s mantle should be lighter. Silicate rocks (which make most of Earth’s crust and mantle have density 3.

An Earth-like planet in orbit around an (unhabitable) gas giant, yet both are in the habitable zone. When a planet becomes aquatic, liquid Earth, water becomes a geological phenomenon: water goes down to at least 600 kilometers down on Earth, and then back out, through volcanoes. This means that becoming water bearing is very stable geologically, and can last billions of years, as it did on Earth. Latest geological research has found 4 billion year old fossils...

An Earth-like planet in orbit around an (inhabitable) gas giant, yet both are in the habitable zone. When a planet becomes an aquatic, liquid Earth, with oceans, water becomes a geological phenomenon: water goes down to at least 600 kilometers down on Earth, and then back out, through volcanoes (we have evidence of plenty of water in the Martian regolith, foo!) This means that becoming water-bearing is very stable geologically, and can last billions of years, as it did on Earth (or Mars!). Latest geological research has found 4 billion year old fossils…

 

I propose this:”Venus is less massive because it does NOT have (as much as of) Earth’s heavy radioactive and nickel-iron core.

Indeed, what else? Uranium and the like have more than twice the density of iron (19.1 versus 7.8… g/cm^3). I believe Earth is in what I call the Radioactive Zone. Not just the Water Zone, aka the “Habitable Zone”. According to me, without radioactivity at the core, or a somewhat similar arrangement, indigenous life is not possible.  It’s not just a question of avoiding many cosmic disasters… We need an enormous fission reactor inside

Venus’ magnetic field is weak, and make the planet appear like a comet (observing with some instrumentation). Because the Venusian magnetosphere is weak, the solar wind shreds the Venusian upper atmosphere, in particular robbing it of hydrogen (water).

Recent studies of Mars show that the Martian atmosphere was shredded, and thrown to the stars by Coronal Mass Ejections (CME). CMEs do not affect Earth’s atmosphere, because the Solar Wind is deviated away from Earth’s sensitive atmosphere by the Earth’s mighty magnetic field. 

The Earth's Defense System Is, First, Magnetic!

The Earth’s Defense System Is, First, Magnetic!

Why is the Earth’s magnetic field so strong? Because we have a churning ocean of liquid iron below our feet. That churning in turn is caused by the extremely hot core. The surface of the core is as hot as the surface of our sun, Sol. If suddenly the ground became transparent, and we could see the core directly, we would be immediately blinded, and then roasted.

I have proposed, for several decades, that all this heat is caused by having a lot of radioactivity in the core. That’s what provides with the enormous energy needed. That used to be “scientifically false”, for no scientific reason that I could understand. I had heated arguments with at least one laureate of a Geophysics prize, about this (so heated, and in front of his wife, that he claimed later that the humiliation he suffered a particular day, contributed heavily to the failure of his marriage… Methinks it’s rather his hysteria which damaged his aura…).

Now neutrinos geophysics is a reality, though. Radioactive fission generate neutrinos. Those have been picked up from the core of the Earth, demonstrating my point in its full intensity. At least 50% of the Earth’s core heat is now known to be of radioactive origin. .

So Venus has a different composition from Earth, less heavy-duty, less of a heavy fission core to animate a mighty iron ocean churning inside, as demonstrated by its apparently nonexistent internally generated magnetic field (Venus has an externally generated magnetic field, showed ESA’s Venus Express). Actually Venus is the only of the major planets I know without a magnetic field. Thus, we may deduce that Super Earths, just like planets in our own solar system, may also have varying geological compositions.

Conclusion: As I will show in a separate essay, the composition of a Super Earth can be so full of silicates that the ground gravity is similar to Earth (elementary mathematics!).  To believe that scaling up the composition of Earth to all and any Super-Earths is a necessary assumption is wrong. It is wrong, looking at Venus, just as it is wrong, looking at Mars.We have indication that the internal composition of rocky planets vary tremendously.

Considering that Super Earths are the most frequent type of planets found (so far; partially an experimental quirk…), there will be habitable Super Earths. Build very much bigger telescopes, pretty please…

Patrice Ayme’

Contemplating Philosophically Trappist Habitable Planets

February 24, 2017

From TRAPPIST Monachal Studies in the Middle Ages, To Seven Planets found around one star, the arc of intelligence pursues its ascent! Colonizing the giant Milky Way four armed barred spiral galaxy, with our greedy electronic eyes to start with! The enemies of Progress shall regress!

Surviving is what we do. Contemplating exoplanets, as our ancestors did the Savannah (before colonizing it):

New potentially habitable planets have been found, a mere 39 light years away. They may harbor life. This has everything to do with philosophy. The fascist Catholic church tortured Giordano Bruno, a travelling astronomy professor, for seven years in the Vatican, then pierced his palate, and burned him alive, just for having entertained the possibility of other solar systems, complete with little green men and exobiology. Exobiology meant that the Vatican would not control the universe, as it was supposed to.

The despicable anti-intellectual madness of the Catholic theofascism is not quite dead: this is the present of Islam. And this is what the pseudo-left wants to impose on us (because that pseudo-left in truth works for plutocracy, the enemy of reason).

Another theme of the pseudo-left is that colonialism is bad (whereas most of the world, including Japan and South Africa, full of Bantus who did not use to be there a little while back, is the product of colonialism). The presence of habitable exoplanets reminds us that now colonialism, colonialism of other worlds, is a necessity. Yesterday toi fight cannibalism and slavery, amen, today to ensure the survival of intelligence.

Indeed, colonialism is a necessity for the same reason as it was for our distant ancestors and those of baboons, all of whom left the safety of the trees: colonizing the savannah was better than the alternative, which was death among the trees, in the Dark Forest (I just provided perniciously a link to an excellent Chinese Sci-Fi book; I advise NOT to read the Wikipedia article, which tells the whole tale, all too well, but go buy the book and read it first instead!).

Solar Systems Around Red Dwarves Were Found In Science Fiction So Far, Now They Are Science Fact. Impression of the view from a water bearing Trappist 1 Planet.

Solar Systems Around Red Dwarves Were Found In Science Fiction So Far, Now They Are Science Fact. Impression of the view from a water-bearing Trappist 1 Planet. Spending a bit more money on telescopes would give us real pictures within a decade.

All of morality, and more generally, philosophy, flow from the opportunity of survival, granted by the understanding that a bit more imagination provides with.

The Politically Correct movement (which is anything but) has completely forgotten the deep nature of humanity, or, more generally, intelligence. There is no correctness in the city (polis) if there is no correctness in the physical sense. “PC” is a lie, a manipulation. What they call Political Correctness is the Perfect Con. The Perfect Conspiracy of vicious greed against intelligence.

Interestingly, the astronomers who invented the acronym “TRAPPIST” to designate this Solar System clearly had a feeling for the grander perspective of history I just alluded to.

***  

Why The Name Trappist For Planets?

The Franks brought monasteries under their mighty secular wings in the Fifth century. The Franks had set up their confederation two centuries earlier, under a law written in Latin (the Franks themselves talked a form of Dutch, but they eagerly learned from and then interfere with, Rome)).

During those two centuries the Franks helped Constantine acquire control of the empire, yet, while their comrade in arms Constantine was busy taking himself for the self-described “13th Apostle”, the Franks stayed anti-Christian, while their employer invented, and imposed what he christened “Orthodox Catholicism”.

Said Catholics collapsed the empire with their Political Correctness gone completely mad. Soon enough the Founders of the Church (bishop Ambrose of Milan and Al.) had to submit to their own contradictions. To their sorrow, they put the Franks, whom they had just fought to death, in charge of defense of the empire by 400 CE.

Verily, that was shortly after the Frank Arbogast took control of the Occidental empire in 392-394 CE. By the late fifth Century the Franks understood finally that the optimal course consisted in taking control of Catholicism (“Universalism”), by inventing their own version, just as Constantine had. But while avoiding the pitfall of superstition. (Consul Clovis famously quipped that Christ would never have been crucified if his Franks had been around: a deliberate mangling of Christian superstition!) 

Under the Franks, and opposed to the Pope’s fanaticism, in particular that of  Gregory the Great, monasteries became centers of knowledge. Saint Benedict of Nursia (in England) became the sort of Catholics the Franks tolerated and encouraged: those new style catholics only preached the kind side of Christianism, not its dark side, and were not just knowledge and progress friendly, but all about it.

Benedict’s mentality led later to the order of the Trappist monks, severely dedicated to study.

The Franks would save 94% of the Greco-Roman books which survived.

In any case, this is remembered by the European astronomers who discovered TRAPPIST 1. As Newton said, repeating 12th century’s  Bernard of Chartres, four centuries later: “We stand on the shoulders of giants”. More exactly, “nanos gigantum humeris insidentes”, we are dwarves standing on the shoulders of giants. We discover truth by building on previous discoveries. The moods within Frankish monasteries, for more than a millennium, was all about studying and preserving past wisdom. Without them, all, but ten of Greco-Roman intellectual works would have been lost.

***

The  TRAPPIST exoplanet survey is led from the University of Liege, Belgium. Using the 63 centimeters Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile. A member on the team was the initial discoverer of the first exoplanet. (Chile is a honorably performing member of Greater Europe, and is full of expensive European, and US, telescopes enjoying the clarity of the high altitude Atacama desert.)

In 1995, Michel Mayor and Didier Queloz of the University of Geneva,  used the radial velocity method with the ELODIE spectrograph on the Observatoire de Haute-Provence telescope in France to discover the first exoplanet around a main sequence star. Both received the Wolf Prize in physics (among other prizes). (My uncle Daniel Challonge founded that observatory. Continuity of civilization here too!)

Now we have discovered 3,500 exoplanets.

Interestingly, Winston Churchill wrote a fascinating, and very correct paper on exoplanets in 1939. Although the paper was unpublished, its content had got to have been known, as its author had close friends who were first class physicists. Basically Churchill wrote that there should be plenty of exoplanets. The theory of solar system formation at the time was that such a system would form only when another star passed close by, and tore material away. Churchill was not fooled and correctly guessed that the correct theory was the nebular theory (which predict plenty of planets). That was that the system gathered from a gas. The idea was discovered by Kant (in his astronomical phase) and Laplace.

***

The TRAPPIST 1 system was so fascinating that NASA spent hundreds of hours of the Spitzer, Hubble and Kepler orbiting space telescopes to decipher its mysteries. (Follow-up studies will use NASA’s upcoming James Webb Space Telescope, launching in 2018 on an Ariane rocket.)

There are seven Earth size TRAPPIST 1 planets, all rotating fast around a red dwarf. Such stars are the most frequent in the universe. They last a very long time, but they flicker, sometimes emitting enormous amounts of radiation. That means that they may sterilize water-bearing planets around them. There are three such planets around TRAPPIST 1. They may need very powerful magnetic fields to keep their atmospheres (solar storms is how Mars lost its atmosphere, recent studies showed). However that means the planets have to be endowed with even more powerful nuclear reactors than Earth (and that may well be a miracle!)

The entire TRAPPIST 1 system is tiny, in the sense that it fits within the orbit of Mercury. Thus the planets are very close to each other. Standing on one of the planet’s surface, one should see geological features or clouds of neighboring worlds, which would sometimes appear twice larger than the moon in Earth’s sky!

Even if suitably hydrated, the planets may have no indigenous life, because of the radiation storms, among other problems.

***

But those planets will certainly provide humanity with habitat, thus with hope to found a Galactic Empire.

That will sound ridiculous to the PC crowd. However, anybody else realizes that planet Earth has become too small for our increasingly divine technology.

So Trappist 1 should be viewed as a suitable target for colonization (that very non PC word again!) By the time we get there, may have so much technology that we could inhabit any system, and the space in between.

If the fuelless propulsion engine turns out to be real, we would have a means to go to distant stars at very high speeds.

Right now the fastest speeds we can achieve are of the order of 40 kilometers per second, 1/10^4 the speed of light. TRAPPIST 1 is 39 light years away. That means it would take 350,000 years to get there. From the chemical impulse propulsion we have now. However other modes of propulsion exist, or are now imaginable…

“Fuelless” propulsion has apparently been observed. If the effect is real (as it seems), its origin is deep in the foundations of Quantum Physics. (I proposed my own mechanism, Dark Matter Propulsion; researchers at NASA have proposed that the ever mysterious “vacuum energy” is tapped).

Fuelless propulsion achieves at least 100 times the energy efficiency of solar sails and laser push propulsion. The latter has been proposed to send a smartphone sized probe through the Trisolaris Centaurus system, which, it was suggested, it could reach in 20 years (a 100 meter telescope would be way cheaper and is certainly feasible).

So, weirdly enough, there is hope to conquer the entire galaxy pretty soon. The North Korean dictator’s vicious ways may help: Kim just poisoned to death his half-brother in the Kuala Lumpur airport, using VX nerve agent. Taking out Kim, a necessary task, while not allowing him to nuke Tokyo, Seoul, Beijing or LA, should bolster research in more advanced tech.

Spending more on powerful telescopes with existing technology should make us capable of seeing directly the surfaces of such planets (because the Red Dwarves don’t shine brightly, one can look at their planets directly; for stars like the sun, Sol, Alpha and Beta Centauri, one needs to put a screen in front, to mask the star’s blinding light, something which can be done in space, floating hundreds of kilometers away; the technology exists, it’s just a matter of spending half a billion dollars to launch the contraption…) The funding for a system of mighty telescopes is less than one would get by taxing just one of the world’s mightiest plutocrats. Yes, just one, fairly.

The ways of the Lord, namely within ourselves, the possibilities our deepest minds conceive, and bring forth, can only be mysterious. Imagination of the better parts of our best minds, is beyond the comprehension of the public discourse constituting the minds of most of us.

Yet we all have to progress in intelligence, emotional or rational, if we want to improve the probability of survival of terrestrial intelligence. Pretty pictures of imagined surfaces of exoplanets should help.

Patrice Ayme’    

Nature Of The Physical Law & Reaction Law

December 5, 2016

Human laws are modelled, in spirit, after physical laws. So it is socially important to realize how physical laws are established, and that they are not immutable. Physical laws are established by observation (some direct, some axiomatic; yes, a paradox). However, if you read the magazine “Wired”, you may feel that physical laws are established, like the Bible or the Qur’an, by the sheer power of a personality cult:

“LAST MONTH, NASA researchers dropped news with potentially huge consequences for space travel and science as a whole: They ran an experiment whose results seem to defy the very laws of physics, and could change how we travel through outer space. Problem is, experts say that it’s incredibly unlikely that Isaac Newton is wrong. Instead, the most likely explanation is the team simply made a mistake somewhere along the way

The team was testing a theory that there’s a new way to propel satellites, instead of using rockets powered by a limited supply of fuel. So they put a radio antenna in a specially designed, sealed container. Turned on, the antenna bounced 935MHz radio waves (similar to those used by some cell phones) around, and the container apparently moved a tiny, tiny bit. This violates Newton’s third law of motion, one of the basic tenets of physics.

Loosely put, Newton taught us that no action can occur without an equal and opposite reaction.”

[WIRED from August 2014: https://www.wired.com/2014/08/why-nasas-physics-defying-space-engine-is-probably-bogus/]

Reaction = Action Is An Experimental Fact. Or Was, Until Recently. Does not have to stay that way

Reaction = Action Is An Experimental Fact. Or Was, Until Recently. Does not have to stay that way

Right, the article is from 2014. However, the riddle got more interesting in 2016, when the same tests were conducted in hard vacuum… with the same results (it was initially thought that radiation heated air, which expanded, creating a push; without air, that counter-idea failed).

Who are these “experts”? People who gave the Nobel Prize to each other? Newton did not “teach” us that action = reaction inasmuch as he demonstrated it (thanks to arcane mathematics). Before I explain what I mean, let me mention that Richard Feynman wrote a famous book “The Character of the Physical Law” (which I read). Feynman observes that there is a hierarchy of laws. Here I will observe something even more subtle: there is a hierarchy of how fundamental laws are viewed as fundamental.

***

Newton ASSUMED this “Third Law”, he made an hypothesis of it (and the law was probably known to cannoneers for centuries). Using in part this action = reaction hypothesis, Newton was able to deduct, from a large axiomatic system, with lots of arcane mathematics, theorems. And some of these theorems had practical consequences which were found, or known, to be true (Kepler laws). So it was reasonably assumed that Newton’s Third Law was correct: it is an axiom the use of which bring the correct theorems. The same sort of reasonings established the First and Second Laws of motion, which were discovered by the stupendous genius Buridan, three centuries BEFORE Newton.  

To my knowledge, the Third Law was first stated by Newton. However, that law was certainly well-known by Roman artillery engineers, who were used to catapult large masses at enormous distances: they knew of the recoil all too well. Roman and European Middle Age artillery enabled to seize cities (armies which were less competent in artillery found seizing cities difficult to do; the Turks used Hungarians engineers to breach the walls of Constantinople with giant guns).

Thus we see there are two sorts of physical laws: those we assume as axioms, and then we certify them, because the mathematical logic they give rise to bring apparently correct results. Other natural laws are observed directly.

For example, the so-called “Standard Model” can be viewed as a sort of giant law. It uses, in its axioms, the so-called Higgs boson, and that was indeed found (sort of).

Thus direct observations can suggest a law (say action = reaction; or gravitation) which then is established through the axiomatic method (heavily used in modern physics). Actually the case of gravitation is even more interesting: observations suggested an attractive force. Then Ismaël Bullialdus, a French priest-astronomer-mathematician found a reasoning why it should be an inverse square law (Bullialdus has a crated named after him on the Moon). Armed with Bullialdus inverse-square law, Isaac Newton used the inverse square law as an axiom to “deduce” Kepler’s laws  (I wrote “deduce”, because, centuries later, it was called into question whether Newton had properly demonstrated Gauss’ law, which reduce, gravitationally speaking, planets to massive points)

Examples of laws observed directly are numerous: they include the classical laws of optics, of forces (depicted by vectors; but one cannot use vector theory to prove how force behave… because vectors are abstracted forces), much of electrical behavior, etc.

Some laws were deduced from axiomatics before being demonstrated experimentally. Newton’s crowning achievement was more or less) demonstrating the equivalence of Kepler Laws with the 1/dd inverse square universal attraction law… given the laws of “Newtonian” Mechanics.

As I said, the laws of mechanics were greatly deduced by Buridan and various engineers, generations before Newton.

Could the same be going on now? Who knows?

It is a question of observation. Ultimately physics, nature, is what is observed, nothing less. It gets to be more than what is observed, because of our imagination, and the fact it needs to use the logics and maths it knows.

Meta-lesson? Politics degenerated in the West, in the last 50 years, because what was really going on was observed only in a fragmentary way. This is in particular the drama of so-called “left”, or progress. We have to stick to what is observed.

In the case of democrats, what was observed is that “Democrats” selected a candidate who was the object of 4 Congressional inquiries (Sanders had none, never had any).

Now they insult us.

Patrice Ayme’

Ever Darker Universe Expanding Ever Faster?

June 3, 2016

The most important discoveries in physics of the last 50 years are Dark Matter, and so-called Dark Energy.

The two most precise methods to evaluate the accelerated expansion of the Universe disagree by 9%. This surfaces from a recent 2016 paper. I am astounded by the fact that different methods agree so much.

A paper detailing the discrepancy, reported on the pre-print server Arxiv in April by Adam Riess of the Space Telescope Science Institute in Baltimore, Maryland, and colleagues, accepted by The Astrophysical Journal, reveals the slight discrepancy between the methods we have of measuring the expansion of the universe.

Not auspicious for life: Cepheids Stars Enable To Compute Distance. RS Puppis Shown Here, Varies By A Factor of 5 Every 40 Days.

Not auspicious for life: Cepheids Stars Enable To Compute Distance. RS Puppis Shown Here, Varies By A Factor of 5 Every 40 Days.

One method looks at dimples in the cosmic microwave background (CMB), a glow supposedly left behind by the hot, early universe just a few hundred thousand years after the alleged Big Bang. Space-based observatories like NASA’s WMAP and ESA’s Planck have measured small fluctuations in temperature in the CMB. Assuming we understand the physics in extreme detail, the size of these fluctuations let physicists calculate how fast the universe was expanding when the universe began, some 13.7 billion years ago.

The other method measures how distant galaxies appear to recede from us as the universe expands, using stars and supernovae of type Ia, which have a known brightness to estimate the distance to those galaxies. These Type Ia supernovae measurements led to the discovery of dark energy, and earned Riess and other physicists in Berkeley and Australia a Nobel prize in 2011.

The discovery of Dark Energy was astounding (although rumors existed since the 1970s). The physics established in the early Twentieth Century did not predict Dark Energy anymore than Dark Matter (Dark Matter was indirectly observed around 1934, but mainstream physics obstinately refused to pay attention for many decades… And still does not, on the theoretical side).

In the case of Dark Matter, it is hoped by the Standard Persons of the Standard Model, that a mundane, anticipated explanation will surface, such as SuperSymmetry (“SUSY”). SUSY would provide for plenty of mass, because it adds plenty of particles (one for each existing particle). SUSY assumes a perfect symmetry between bosons and fermions.

But I don’t believe very much that SUSY, even if it existed, would explain Dark Matter, for a number of reasons. Somehow the mass of the Super Partners would have to add up to ten times the mass of everyday matter. That’s weird (to me). Even worse, SUSY does not explain why Super Partners would get spatially segregated, as Dark Matter is (as far as I know, only my own theory explains this readily).

Instead I believe an obvious logical loophole in Quantum Physics will provide (plenty of) Dark Matter. And it makes the observed spatial segregation between Dark Matter and normal matter, obvious. One could call that little pet of mine, the Quantum Leak Theory (QLT).

I do not see a natural explanation for Dark Energy. Nor do any of the established theories. Actually, Dark Energy is not described well enough to even know what is really going on (different scenarios are known as “Einstein Cosmological Constant”, or “Quintessence”, etc.).

Yet, it is imaginable, at least in my own theory of Dark Matter, that the mechanism creating Dark Matter itself could also produce Dark Energy. Indeed the QLT implies that long-range forces such as gravity change over cosmological distances (a bit like MOdified Newtonian Dynamics, MOND).

To come back down at the most prosaic level: supernovae distance measurements depend on knowing the distance to nearby pulsing stars very precisely (such as the Cepheid RS Puppis depicted above). The European Space Agency’s Gaia mission, an observatory launched last year, which is measuring the distance to 1 billion Milky Way stars, should help.

Many other telescopes will soon come on-line. Astronomy leads physics, just as it did, 25 centuries ago. Nothing beats looking out of the box, and peering in the dark universe.

Patrice Ayme’

Astronomy Domine

April 6, 2016

Astronomy domine is a song much played in philosophy, not just by Pink Floyd, ever since there are men, and they observe. (Homo Erectus probably observed the last fabulous Galactic Core Eruption, two million years ago.)

Before feeding the pocketbooks of the greedy, science feeds the imagination of poets.

Astronomy has been at the forefront of physics, at least since Buridan (14th Century). Buridan applied his notion of impetus to explain that planets went around in circles from what we now call inertia. In Greek Antiquity, a large, wagon sized meteorite landed in Northern Greece, and was visited for centuries (it may have been a piece of Halley’s comet, which whizzed by spectacularly close in 466 BCE).

A Place Of Great Eruptions, Past & Future. Eta Carinae Nebula, At Least A Couple of Giant Stars, The Lightest One At Least 30 Sun Masses, the Largest Maybe As Much As 220 Solar Masses, 7,500 Light Years Away. Five Million Times The Luminosity Of the Sun. Stellar Natures & Explosions Are Far From Fully Understood!

A Place Of Great Eruptions, Past & Future. Eta Carinae Nebula, At Least A Couple of Giant Stars, The Lightest One At Least 30 Sun Masses, the Largest Maybe As Much As 220 Solar Masses, 7,500 Light Years Away. Five Million Times The Luminosity Of the Sun. Stellar Natures & Explosions Are Far From Fully Understood!

Supernova explosions are awesome: the most luminous one ever detected had a peak luminosity 570 BILLION times the luminosity of the Sun (yes, (570) 10^9 Suns; that was seen in 2015).

Supernovae are us. Supernovae create most of chemistry: the extremely high temperatures of their explosions enable light nuclei to smash into each other, and fuse, making most elements of the periodic table.

There are two main types of stars which explode as supernovae: white dwarfs and massive giant stars. In the so-called Type Ia supernovae, gases falling onto a white dwarf raise its mass until it nears a critical level, the Chandrasekhar limit, resulting in an explosion when the mass approaches exactly 1.44 Solar Mass. In Type Ib/c and Type II supernovae, the progenitor star is a massive star which runs out of fuel to power its nuclear fusion reactions and collapses in on itself, reaching astounding temperatures as it implodes, and then explodes.

Supernova science is very far from finished knowledge. Even the nature of the Crab Nebula supernova, which was seen to explode in 1054 CE, is not clear (it is known it was a big star, more than 8 Solar Masses; it left a pulsar).

Even the Crab was philosophically interesting in devious ways: the explosion was duly recorded by Europeans and Chinese. However the Muslims tried very hard not to see it (a mention was recently found). Indeed, the heavens, for desert savages, are supposed to be messages from God, and God playing games with stars was apparently not kosher…

Type Ia supernovae have completely changed our idea of the universe in the last two decades. (According to your modest servant, other types of supernovae may change our view of the universe even more dramatically. See the conclusion!)

Eta Carinae is the only star known to produce ultraviolet laser emission!

There is some philosophy to be extracted from Eta Carinae: if a star, or a system of gravitationally bound stars, can be that exotic, how sure are we from the astrophysics we think we know?

I am not the only one who thought of this. The teams who determined the accelerating acceleration of the universe (“Dark Energy”), had to exclude weird, sort-of Type Ia Supernovae… from their statistics (pre-selecting the population of explosions they would apply statistics on…). There are now other ways to detect Dark Energy (and they give the same results as the pre-selected Type Ia supernovae studies). So the results have been confirmed.

However my position is more subtle, and general. How sure are we of the astrophysics we have, to the point that we can claim that stars are unable to create all the known elements? In the proportion observed?

I am no specialist of astrophysics. But, as a philosopher, I have seen the science evolve considerably, so I think we cannot be sure that we absolutely need the hellish temperatures of the Big Bang to generate all observed elements.

Very large stars (600 Solar masses) have now been observed. They don’t live very long. I don’t see why stars thousands of Solar Masses, living only for a few hundred years, before exploding, are not possible. During these so-far-unconceived apocalypses, nucleogenesis could well follow unexpected ways.

And that could well remove one of the main arguments for the Big Bang.

Patrice Ayme’

Momentum, Force, Inertia, Middle Ages, Buridan

March 20, 2016

WHAT’S MASS? It is not an easy question. An answer for inertial mass was given seven centuries ago. Astoundingly, it’s still the foundation of our most modern physics. Let me explain.

Momentum, force, and inertial mass were defined from trajectory deviation, first. This, I will show below, is incredibly modern (the idea is found in Riemann ~ 1860 CE next). This was all in Buridan’s work, in the Fourteenth Century (14C).  Jean Buridan postulated the notion of motive force, which he named impetus. Consider this, from Buridan’s Quaestiones super libros De generatione et corruptione Aristotelis:

“When a mover sets a body in motion he implants into it a certain impetus, that is, a certain force enabling a body to move in the direction in which the mover starts it, be it upwards, downwards, sidewards, or in a circle. The implanted impetus increases in the same ratio as the velocity. It is because of this impetus that a stone moves on after the thrower has ceased moving it. But because of the resistance of the air (and also because of the gravity of the stone) which strives to move it in the opposite direction to the motion caused by the impetus, the latter will weaken all the time. Therefore the motion of the stone will be gradually slower, and finally the impetus is so diminished or destroyed that the gravity of the stone prevails and moves the stone towards its natural place. In my opinion one can accept this explanation because the other explanations prove to be false whereas all phenomena agree with this one

 In 14 C, In The Late Middle Ages, Buridan Defined Momentum And Force By Considering Deviation Of Particle Trajectory

In 14 C, In The Late Middle Ages, Buridan Defined Momentum And Force By Considering Deviation Of Particle Trajectory

Just a word of the modernity of it all: the idea translates directly into defining force(s) with changes of distance between geodesics (in differential manifold theory).

Buridan states that impetus = weight x velocity (modern momentum). All the predecessors of Buridan thought one needed a force to keep on moving, but Buridan did not. Famous predecessors such as Hibat Allah Abu’l-Barakat al-Baghdaadi, who modified Avicenna’s theory, which followed John Philoponus believed in inertia NOT. They all followed Aristotle, who believed all and any motion died away, if no force was applied. (Not to say no Muslim ever invented anything scientific: the Uzbek ibn-Musa al-Khowarizmi crucially put the finishing touch on the zero, which he partly got from India, in the Ninth Century.)

Buridan’s pupil Dominicus de Clavasio in his 1357 De Caelo, pointed out that this extended to gravity:

“When something moves a stone by violence, in addition to imposing on it an actual force, it impresses in it a certain impetus. In the same way gravity not only gives motion itself to a moving body, but also gives it a motive power and an impetus, …”.

Buridan knew celestial bodies were moving from inertia: “God, when He created the world, moved each of the celestial orbs as He pleased, and in moving them he impressed in them impetuses which moved them without his having to move them any more…And those impetuses which he impressed in the celestial bodies were not decreased or corrupted afterwards, because there was no inclination of the celestial bodies for other movements. Nor was there resistance which would be corruptive or repressive of that impetus.”

By definition, inertial mass is what resists an applied force. The greater the resistance to a force, the greater the inertial mass of what it is applied to.

***

Buridan’s Revolution:

Buridan introduced p = mv, called it “impetus” and stated that it did not change if no force was applied. Thus Buridan buried the complete idiocy known as Aristotle’s physics. (That Aristotle could be a complete idiot at the mental retard level is philosophically, and historically capital, as Aristotle set in place the leadership system through celebrities, which we enjoy to this day).

Buridan’s Inertia Law is known as Newton’s First Law (because Buridan was from Paris, while Newton demonstrates the superiority of the English born three centuries later by attributing to him what Isaac did not discover).

More generally Newton asserted clearly his Second Law: dp/dt = F (where  F is the Force, by definition). It’s an axiom. (Weirdly the Second Law implies the First…)

***

Force = Deviation From Trajectory:

This is Buridan’s idea. It was taken over again by Bernhard Riemann, in the early 1860s (five centuries after Buridan’s death). In modern mathematical parlance, force is depicted by geodesic deviation. It’s this idea which is at the triple core of Einstein’s theory (with the idea that gravitation/spacetime is a field, and that it’s Newton’s theory, in first order).

So this is ultramodern: the idea got carried over in “Gauge Theories”, and, because there are several forces, there are many dimensions.

***

Thought Experiment Often Precedes Experiment: 

Yesterday I bought a (2015) book by a (British academic) historian of science. In it, the honorably paid professional asserted modern science started with Tycho in 1572. Tycho, a Count set his student Kepler onto the refined study of the orbit of Mars. Both Tycho and Kepler were 5 star scientists (differently from, say Copernicus or Einstein, both of whom too little inclined to quote their sources). So they were, because, differently from, say, Obama, they had strong personalities. Great ideas come from great emotions. Tycho believed the Ancients had lied. And he was right, they had lied about the orbits of the planets: observations with the same instruments gave different results from the ones the Ancients had claimed.

The preceding shows that this trite notion is profoundly false; the scientific revolution was launched by Buridan and his students (among them Oresme, Albert of Saxony), contemporaries and predecessors (including Gerard de Bruxelles and the Oxford Calculators). Some of their work on basic kinematics, the exponential and the mean theorem of calculus was erroneously attributed to Galileo or Newton, centuries later.

To believe everything got invented around the seventeenth century is not to understand how the human mind works. Experience has to be preceded by thought-experiment (even Einstein understood that). Buridan and his contemporaries did the preliminary thinking (while others were making clocks and hydraulic presses). All of this would become immensely easier after the invention of algebra and Descartes’ analytic geometry, true.

So let’s have a loving and admirative thought for Buridan, the main author of the scientific revolution, whose reputation was destroyed by the CATHOLIC STATE: Buridan’s astronomical reputation was destroyed by the Catho-fascists, more than a century after his death. That’s why the heliocentric system is attributed to an abbot from a rich family (Copernicus), instead of the master physicist said abbot was forced to read as a student.

Studying the history of science, and mathematics uncovers the fundamental axioms, in the natural order given by their obviousness.

Determining which ideas came first, and why is not about determining who is the brightest child, or most impressive bully in the courtyard. In 1907, Einstein made a big deal that he, Albert, was the discoverer of Energy = Mass (“E = mc2”). A careful inspection shows that this either reflects dishonesty, or misunderstanding on his part. Or both. I will address this soon, as I keep on studying mass and momentum.

Buridan put momentum at the core of physics, and thought-measured if dynamically. Momentum is still at the core: photons have momentum, but not mass.

It’s important to realize that many of the latest ideas in physics (all of “Gauge Theories”)  rest on an idea invented in Paris seven centuries ago. Not to slight it, or to heap contempt on all the noble Nobels. But, surely, the time has come for really new ideas!

Patrice Ayme’