Archive for the ‘Foundations Physics’ Category

Mathematical Beauty, Physics, And Truth

June 23, 2018

Mathematical beauty can guide physics: this is what happened for the foundation of QED by Dirac. At least, so it looks at first sight, and so he said. However, Dirac was guided by one intuition deeper than “beauty”: finding an equation of maximum simplicity to describe the electron… while knowing the Klein Gordon relativistic equation didn’t describe the electron, finding a simpler (first order) PDE that would be “relativistic” guided his search. Then see what happened. He knew that the simple wave equation are first order (although conventional strings are second order PDEs). Doing so Dirac re-invented unknowingly part of Cartan Spinor theory, a pure mathematical theory invented 15 years earlier. The Dirac equation he found led to experimental predictions, which were found to be true.

General Relativity too had a mathematical origin: Riemann, in the 1860s, got the idea that force will manifest itself as a deviation of geodesics. The idea is actually even older, in 3 dimensions, going back to Buridan (1350). That’s how Buridan superseded Aristotelian physics with his “Impetus” theory (the first order of the mechanics we have now).

Special Relativity was invented differently: a number of equations were found to explain effects observed, until Poincaré built a coherent logical whole resting on the idea that the speed of light should always be measured to be c. In particular electromagnetism was found to the essence of Relativity.

The picture is from CERN. The waves are from beaches of Western North America. Ultimately, it seems likely to me that nonlinear phenomenon are needed to understand hydraulics in full. But present day hydraulics, like Quantum Physics (away from collapse), is linear…

So the opposition is not so much between mathematics and physics, it’s between shallow ideas and deeper ideas. Physicists had no deeply new ideas, ideas which can stand-under, understand, for generations. Much of that has to do with denying that the Foundations of Quantum Physics are worthy of consideration.

Mathematical beauty can guide physics: but who guides mathematical beauty? 23 centuries ago, mathematicians then in power decided that Euclidean mathematics was beautiful, and non-Euclidean mathematics (invented prior) was ugly. Let’s not talk of the ugly anymore, or, at least, too complicated, they opined. After a few generations of pounding that notion, it became a claim that nothing existed in geometry, but for the beauty of geometry in a plane. Mathematicians got so dumb they forgot that the axiom of parallels was just an axiom, not a theorem (they tried to demonstrate it for nearly 20 centuries, whereas it would take ten seconds to explain to them what idiots they were, had they a brain in that direction…)

Indeed, never mind that Pytheas of Marseilles and his successors had, thanks to spherical geometry, computed the size of the rounded Earth most precisely. So, clearly mathematics on a sphere was extremely useful! In particular, true, and in existence!

Some say equation are beautiful. Equations themselves are subjects to interpretations. For example Henri Poincaré’s E = mcc, rolled out at the Sorbonne in 1899, is not clear. Similarly Einstein GR equation, basically: Curvature – Mass-energy, is not clear, as Einstein pointed out: right side is ill defined. After Dirac discovered his equation he realized it had to live in “Spinor Space”. So interpreting an equation gave the space where it had meaning.

***

Right now the most fundamental problems in mathematics and physics are clear to yours truly:

First, mathematics use an infinity axiom, namely that there is infinity. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: There is a set I (the set which is postulated to be infinite), such that the empty set is in I, and such that whenever any x is a member of I, the set formed by taking the union of x with its singleton {x} is also a member of I. Such a set is sometimes called an inductive set.

https://en.wikipedia.org/wiki/Axiom_of_infinity

This, this Infinity Axiom, in my opinion supposes too much, relative to the physical and practical realms, just like Euclidean geometry supposed too much relative to the practical and physical realms. Indeed, in practice, flat geometry does not exist. Same for infinity: in practice infinity cannot exists (not enough particles to count all the numbers). The Infinity Axiom introduces infinities in physics which are a mathematical artefact. This philosophical point is too hard for most top theorists to understand, the ones the Wall Street Journal is in love with (because of there are leading minds officially sanctioned in physics, thus as higher principles, so it is in in economics, sociology, hence plutocracy is rightfully supreme; see below).

Second, Quantum Physics is about WAVES. This enormous conceptual breakthrough was from Louis de Broglie. Waves are beautiful, especially Quantum Waves. Yet, in practice, waves are NOT linear. They are often nearly linear, right, but not quite (just like Euclidean geometry doesn’t quite exist, except as a figment of the imagination, and even then… ). However, present day mathematics has not been focused on nonlinear waves, so we don’t have a notion of “mathematical beauty”of nonlinear waves.

And guess what? The formalism of quantum Physics itself says that the “collapse” it can’t do without is nonlinear.

And now for a word of wisdom from that rather tall little thief friend of ours, Richard P. Feynman: “Physics is to math what sex is to masturbation.” There has been too much self dealing in physics, too much nonsense at the highest level! Bohr’s philosophy, which underlays his satisfaction with the Copenhagen Interpretation of Quantum Physics, is a surrealistic horror: he thought that clarity contradicted truth (or idea to this effect… actually the exact contradiction of the beautiful idea of equation).

Want new physics? Do like Buridan, Oresme, and their friends and students, seven centuries ago: invent new mathematics (they invented the second page of calculus, the first one was from Archimedes himself, 16 centuries before). That’s done by working on the axioms, introducing new ones.

So when is a system of thought X deeper than another Y? When X implies Y, by under-standing it, namely introducing deeper (“under”) reasons for its standing.

String theory has been the equivalent of the crystal spheres and epicycles construction which replaced the evidence all could see, that Earth, the small thing turned around the Sun, the big thing (the Greeks knew from computations, looking at the Moon, and shadows, that the Sun was millions of kilometers away…) Right now the big thing is Quantum Collapse, that’s what needs to be understood. String Theory does a few things, like cancelling some infinities as a problem (my proposal above is much more radical… also, unavoidable…)

Meanwhile, while those self-esteemed super brains make super theories of supersymmetries of super strings (their concepts involve the word”super” very much…), to make a theory of Quantum Gravity, little Patrice has noticed this: there is NO experiment, and, a fortiori theory of gravity in the double slit… Why? Because the super minds, too busy being super, have not noticed that we lack experiments there (after they read this, they will steal the idea, and run to the closest physics journal edited by their friends to publish it as their great insight).

Patrice Ayme

***

***

Note 1: the preceding was inspired by the following WSJ article:

Einstein’s character was more like that of an artist than a scientist, his older son, Hans, said: The great physicist reserved his highest praise for theories that are beautiful, rather than ones that merely fit the facts. When, in the latter half of his career, Einstein spent most of his time trying to discover a unified theory of gravity and electromagnetism, he paid little attention to new experiments and focused mainly on trying to find the best mathematical structure. Alas, the strategy got him nowhere.

According to the physicist and prolific blogger Sabine Hossenfelder, Einstein and others who work in a similar way are “lost in math,” the title of her lively and provocative book. Until the early 1970s, few theoreticians fitted such a description—most of them were taking inspiration from the results of experiments. It was this strategy that led them to the so-called Standard Model, which describes the inner workings of atoms with remarkable success. Over the past four decades, however, theoretical physics has gone astray, in Ms. Hossenfelder’s view. Part of the problem, she feels, is that so many theoreticians have allowed themselves to be seduced by the aesthetic appeal of mathematical theories that are going nowhere.

As she explains, the use of beauty as a proxy for truth has an impressive pedigree: Not only was it espoused by Einstein, it also became the obsession of the almost comparably brilliant English quantum physicist Paul Dirac. In 1975 he wrote: “If you are receptive and humble, mathematics will lead you by the hand . . . along an unexpected path, path where new vistas open up . . . from which one can survey the surroundings and plan future progress.” Toward the end of his life, he declared that any theoretical physicist who disagreed with him should give up research and do something else.

As a result of this misguided focus on beauty, Ms. Hossenfelder says, her generation of theoretical physicists has been “stunningly unsuccessful.” The multiverse—the idea that our universe is only one of a vast number—is one of the fashionable concepts that she believes is a dud… 

Ms. Hossenfelder believes string theorists are deluded. “Nature doesn’t care” about mathematical beauty, she declares. Clever physicists have been led up the garden path before, she stresses, pointing to the once-fashionable theories of the ether that Einstein later demonstrated to be redundant.

Ms. Hossenfelder has paid a high price for her counter-orthodoxy…”

And the WSJ to conclude by discreetly celebrating the Fuhrerprinzip which Hossenfelder violated:

“The best string theorists are confident that they are heading in the right direction not only because of the theory’s mathematical beauty but because of its huge potential, despite its formidable challenges.

When Ms. Hossenfelder reiterates in her final chapter that many of the world’s most accomplished theorists are “lost in math,” we cannot help wondering whether it is she who is lost. Time will tell whether many of the world’s leading theoretical physicists have spent decades barking up the wrong tree. Meanwhile, it is pleasing to read that Ms. Hossenfelder now has a research grant and has resumed work on the subject she plainly cares deeply about, no doubt steering well clear of what she regards as bandwagons. In that respect, at least, Einstein would have been proud of her.”

***

***

After the plutocratic horror critique above, I must re-establish some justice to Sabine (and myself, indirectly). Here is Nature:

Lost in Math: How Beauty Leads Physics Astray Sabine HossenfelderBasic (2018)

“Why should the laws of nature care about what I find beautiful?” With that statement, theoretical physicist and prolific blogger Sabine Hossenfelder sets out to tell a tale both professional and personal in her new book, Lost in Math. It explores the morass in which modern physics finds itself, thanks to the proliferation of theories devised using aesthetic criteria, rather than guidance from experiments. It also charts Hossenfelder’s own struggles with this approach.

Hossenfelder — a research fellow specializing in quantum gravity and modifications to the general theory of relativity at the Frankfurt Institute for Advanced Studies in Germany — brings a trenchant new voice to concerns that have been rumbling in physics for at least two decades. In 2006, Lee Smolin’s The Trouble with Physics and Peter Woit’s Not Even Wrong fired the first salvos at the trend of valuing mathematical elegance over empirical evidence. Both books took on string theory, a ‘theory of everything’ in which the fundamental constituents of nature are strings vibrating in many more spatial dimensions than the familiar three. Since its entry into mainstream physics in the mid-1980s, the theory has failed to make predictions that would unambiguously verify or falsify it.

Hossenfelder, too, tackles string theory, but her broadsides are more basic. She points to the paucity of experimental data, exacerbated as the machines needed to probe ever higher energies and smaller distances become more costly to build. Given that, she is worried that too many theorists are using mathematical arguments and subjective aesthetics to judge a theory’s validity.”

By the way, my own theory of Quantum Foundations predicts Dark Matter and Dark Energy… It also predicts unpredicted, in contradiction-with Einstein, mass behavior in, say the 2-slit experiment… Namely a dispersion of mass during translation…

Here is more of Nature:

For example, Hossenfelder questions the desire for naturalness — the idea that a theory should not be contrived or have parameters that have to be fine-tuned to fit observations. The standard model of particle physics feels like such a contrivance to many physicists, despite its spectacular success in predicting particles such as the Higgs boson, discovered at the Large Hadron Collider (LHC) at CERN, Europe’s particle-physics laboratory near Geneva, Switzerland. In the theory, to prevent the mass of the Higgs from ballooning beyond reasonable bounds, certain parameters have to be set just so, rather than be derived from first principles. This smacks of unnaturalness.

To get rid of this ugliness, physicists developed supersymmetry — an elegant theory in which every known particle has a hypothetical partner particle. Supersymmetry made the Higgs mass natural. It also showed how three of the four fundamental forces of nature would have been one at energies that existed shortly after the Big Bang (an aesthetically pleasing scenario). It even unexpectedly provided a particle, the neutralino, that could explain dark matter — matter that is unseen, yet thought to exist because of its observed gravitational effect on galaxies and galactic clusters. Hossenfelder explains that in combining everything that theoretical physicists value (symmetry, naturalness, unification and unexpected insights), supersymmetry has become “what biologists fittingly call a ‘superstimulus’ — an artificial yet irresistible trigger”.

Will Starburst Galaxies Explode the Big Bang?

June 11, 2018

There are MUCH MORE GIANT STARS THAN EXPECTED IN THE UNIVERSE (Factor of ten?)

I have proposed that the Big Bang Model is wrong, and that the universe could be much older, of the order of 100 billion years old, not 13.8 billion years; my iconoclastic and inconsiderate reasoning was philosophical: we have one expansion mechanism, DARK ENERGY. That expansion, Dark Energy, was directly observed, it exists, it’s not a figment of imagination. Many a physicist made a sour face, as Dark Energy was not expected at all: hundreds of arrogant  claims to explain the whole universe, talk to the media and the gullible as if one were god, and then, next thing one knows, one’s theories don’t explain 95% of the universe…

So an insolent philosophy asked: ‘Why would we need another cosmic expansion mechanism?’ Especially one expansion mechanism NOT directly observed, a figment of the imagination, the so-called Inflaton Field, necessary to make the Big Bang theory work (because of arcane complications: basically the universe as observed is around 100 billion light years across, and can have got that big only if it expanded at 10^10 times the speed of light, or something like this… Confusing enough? I have explained what is going on here and there, such as the locality of the speed of light, and the embedding theorem of Lorentzian manifolds. Stay tuned…)

A (Non Spectacular) Starburst galaxy, the Cigar, 12 million light year away. Full starburst galaxies are very blue, from the giant extremely hot (thus blue) stars in their midst. How much do we know about Helium formation in such super giant stars? Philosophers want to know!

So why is the Big Bang necessary? Besides making some people more puffed up than god itself?

Inspired by the H bombs they were thoroughly familiar with, Gamow, Alpher and Herman proposed the hot Big Bang as a means to produce all of the elements: extreme heat caused collisions and the nuclei fused (from the “STRONG FORCE”).

The lightest elements (hydrogen, helium, deuterium, lithium) were produced in the Big Bang nucleosynthesis

Ms. Burbidge, Mr. Burbidge, Fowler and Hoyle worked out the nucleosynthesis processes that go on in stars, where the much greater density and longer time scales allow the triple-alpha process (He+He+He –>> C) to proceed and make the elements heavier than helium.

But BBFH could not produce enough helium. The solution, which Hoyle didn’t like at all, was to make the Helium in the Big Bang. Now we think we know that both processes occur: most helium is produced in the Big Bang but carbon and everything heavier is produced in stars. Most lithium and beryllium is produced by cosmic ray collisions breaking up some of the carbon produced in stars.

In a pirouette, Helium abundance is now viewed the observation which makes the Big Bang necessary… Yet, all this rests on an ironclad understanding of stellar physics… which we assume we have, although we don’t.

Astronomers at the gigantic, high altitude Atacama Large Millimeter/submillimeter Array (ALMA) in Chile investigated intense bouts of star formation in four distant, gas-rich starburst galaxies, where new stars are formed 100 or more times faster than they are in the Milky Way.

By looking at isotopes ratio in Inter Stellar Medium (ISM) Carbon Monoxide CO, one can see if it has been generated in light, or heavy stars. To quote from the original article in Nature: “

Oxygen, carbon and their stable isotopes are produced solely by nucleosynthesis in stars. The minor isotopes, 13C and 18O, are released mainly by low- and intermediate-mass stars (those with stellar mass less than eight solar masses, M* < 8M⊙) and massive stars (M* > 8M⊙), respectively, owing to their differing energy barriers in nuclear  reactions and evolution of stars. These isotopes then mix with the interstellar medium (ISM) such that the 13C/18O abundance ratio measured in the ISM becomes a ‘fossil’, imprinted by evolutionary history and the stellar initial mass function (IMF). The abundances of the 13CO and C18O isotopologues in the molecular ISM, whose measurements are immune to the pernicious effects of dust, are therefore a very sensitive index of the IMF in galaxies.

***

Conclusion of the Nature article:

Classical ideas about the evolutionary tracks of galaxies and our understanding of cosmic star-formation history are challenged. Fundamental parameters governing galaxy formation and evolution—star-formation rates, stellar masses, gas-depletion and dust-formation timescales, dust extinction laws, and more—must be re-addressed, exploiting recent advances in stellar physics.

This doesn’t prove my ideas about the universe are right. Yet the article mention star formation rates have to be lowered by a factor of… seven. (I will resist multiplying 13.8 billions by 7, which is… not making this up, very close to 98 billions…)

This doesn’t prove my ideas about the universe are right… But it goes my way… Ok, let a professional concludes:

Our findings lead us to question our understanding of cosmic history,” Rob Ivison, co-author of the study and director for science at European Southern Observatory, said in the statement. “Astronomers building models of the universe must now go back to the drawing board, with yet more sophistication required.

Moods, in science cannot change until evidence contrary to the old visions one had of things, accumulate. Before that, a change of paradigm can’t be hoped for. Long ago, when I used to be all too human, I communicated with a director at ESO. Delighted by the change of tone, not to say mood… (Another guy I knew was so arrogant that he posited one was not really a scientist until one was the director of a lab, which he happened to be… in astrophysics, the field at hand, where it turns out the big picture was missed…)

But, ladies and gentlemen, remember this: wisdom, even scientific wisdom, doesn’t always triumph in a timely manner. We have examples in science, and mathematics, where wisdom was delayed and defeated for 24 centuries… by the greatest stupidity

Patrice Ayme

***

***

Examples of delayed wisdom: a) The Atomic Theory, of course, complete with eternal motion in the small (which the Greeks had observed and is strikingly described by Lucretius). The theory was then forgotten until the 19C.

b) The Archimedean Axiom in arithmetic/theory of infinity, undetected until 1950, when the US logician/mathematician Robinson detected it.

c) Non-Euclidean geometry found 24 centuries ago, and then lost until 1830 CE…

d) Biological evolution theory, lost between Anaximander and Lamarck… Although practiced by all serious breeders (especially Greek).

e) Computers, lost for 17 centuries… we have one proof the Antikyra mechanism (and various written description) until Blaise Pascal… Hence the computer language “Pascal”

f) Heliocentric theory of Aristarchus of Samos lost between Archimedes and Buridan (and buried again by Catholicism) Heliocentrism was of course obvious, except if one is a caveman, and not to observant…

g) And of course that Earth was round and how big, established and measured first by the great scientist and explorer Pytheas of Massalia (Pytheas de Marseilles), circa 320 BCE. Pytheas even related the tides to the Moon, and got the explanation roughly right (whereas Galileo Galilei, 19 centuries later, got the explanation of the tides completely wrong, and not just that but got a near lethal fight with his friend the Pope, who he brushed off as an ignorant… when the Pope was actually less wrong than Galileo…)

Galaxy Without Dark Matter Found: Another Proof of New Physics?

March 31, 2018

ASTRONOMERS OGLE GALAXY DEVOID OF DARK MATTER!

The newfound object NGC 1052-DF2, a vast, diffuse galaxy, defies conventional explanations. It is to be feared (just kidding!) that various breakthroughs are in the offing, including in fundamental physics (if I believe that what could be true, SQPR, a proposed new foundation for physics, is really true).

The “ultra-diffuse” galaxy NGC1052-DF2, seen here in an image from the Hubble Space Telescope, is the same size as our Milky Way but contains just 1 percent as many stars. It also appears to be empty of Dark Matter. And therein a big problem for Conventional Wisdom:

Yes, that’s a galaxy… Looks dark, but without DM… Nothing the LCDM model saw coming… Is resistance to the New Physics Futile?
NGC1052-DF2 doesn’t look like a typical spiral or elliptical galaxy, but rather a loosely connected glob of star-pocked gas and dust. If it contained an amount of Dark Matter typical for a galaxy of its size, the Dark Matter’s gravity would hasten the motions of several star clusters that orbit it. Instead, van Dokkum’s team found those star clusters moving languidly around NGC 1052-DF2… That suggests Dark Matter can decouple not only from regular, visible matter, but from entire galaxies—a phenomenon LCDM cosmologists claimed couldn’t happen.

Large galaxies, radiant agglomeration of stars, are tied up together by the gravitational pull of Dark Matter, a hidden material that is revealed and observed by its gravitational pull upon the shiny stars it seems to outmass by a factor of ten (we know this from the virial theorem, which basically say: v^2 ~ M/R, where M is the global gravitational mass, v the (“dispersion”) speed, and R the radius where the speed is measured; so the higher the speed of the orbiting stars, clusters, galaxies, at the greater distance, the higher the global mass M).

Dark Matter is considered to be as a defining feature of galaxies as stars and gas… and is thought in the reigning LCDM model, to provide the gravitational seeds from which galaxies assemble and grow (a top cosmologist Sean Carroll insisted on this point in correspondence with me). I strongly disagree with the latter point (in my model, Dark Matter is EMERGENT, a fruit of the Quantum Interaction).

A galaxy without Dark Matter—or without some bizarre, twisted deformation of gravity (such as MOND) that would mimic Dark Matter behavior, in some, only some, cases, and not in cases such as the Bullet Cluster —would contradict the religion of LCDM (Lambda Cold Dark Matter) and the sect of MOND, in other words, such a heretical galaxy would shred official thinking and its main alternative. Yet that is exactly what Yale University astronomer Pieter van Dokkum and his colleagues have found, they report in a study published Wednesday in Nature.

From the horse’s mouth:

A GALAXY LACKING DARK MATTER

(Pieter van Dokkum and Al.)

Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10^10 solar masses) and increases both towards lower masses and towards higher masses… Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 10^8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10^8 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

The twelve (!) authors from Yale, Harvard, Heidelberg, Santa Cruz, who used the giant Keck observatory in Hawai’i, don’t shrink from the exciting consequences:

Regardless of the formation history of NGC1052–DF2, its existence has implications for the dark matter paradigm. Our results demonstrate that dark matter is separable from galaxies, which is (under certain circumstances) expected if it is bound to baryons through nothing but gravity. The ‘bullet cluster’ demonstrates that dark matter does not always trace the bulk of the baryonic mass, which in clusters is in the form of gas. NGC1052–DF2 enables us to make the complementary point that dark matter does not always coincide with galaxies either: it is a distinct ‘substance’ that may or may not be present in a galaxy. Furthermore, and paradoxically, the existence of NGC1052–DF2 may falsify alternatives to dark matter. In theories such as modified Newtonian dynamics (MOND) and the recently proposed  emergent gravity paradigm, a ‘dark matter’ signature should always be detected, as it is an unavoidable consequence of the presence of ordinary  matter. In fact, it had been argued previously that the apparent absence of  galaxies such as NGC1052–DF2 constituted a falsification of the standard cosmological model and offered evidence for modified  gravity. For a MOND acceleration scale of a0 = 3.7 × 103 km2 s−2 kpc−1, the expected28 velocity dispersion of NGC1052–DF2 is σM ≈  (0.05GMstarsa0)1/4 ≈ 20 km s−1, where G is the gravitational constant—a factor of two higher than the 90% upper limit on the observed dispersion.

So exit MOND, Modified Newtonian Dynamics, once again! How many times do we need to kill that vampire? MOND is philosophically ugly, as it is an ad hoc theory; strictly engineered to explain a peculiar feature that is observed… Whereas my own theory, SQPR, was invented for reasons which have strictly to do with the foundations of Quantum Theory, and Dark Matter, and, moreover, Dark Matter as it turns out to be, is just a particular consequence.

***

SQPR, Sub Quantum Patrice Reality Shines, Once Again:

In SQPR, Dark Matter is created by the Quantum Interaction, at particular cosmic distances from ordinary matter, and only then. The density of matter at cosmic distances needs to be just so, otherwise Dark Matter, Patrice’s way, will NOT decouple from normal matter. Instead the galaxy will not develop Dark Matter, just DELOCALIZED Matter.

So how did we get to the present situation, as found in NGC1052–DF2? Suppose the existence of an ultra diffuse gas, on a larger scale than the Milky Way, way back in time. Under its own gravity, the ultra diffuse gas, will gather, and form stars. What is the difference with LCDM? In LCDM, Dark Matter is present to start with, seeds and accelerates galaxy formation.

Whereas in my model, the universe, being much older, perhaps 100 billion years old, there is no need for Dark Matter to seed galaxies: in complete contrast with LCDM, there is plenty of time for ultra diffuse gas to gather into ultra diffuse galaxies…. So this is not just about Dark Matter: the way I see it, it’s the entire vision of cosmology and the Quantum, which is in question.

Patrice Aymé

***

Contextual Notes: 1) Only discovered in 2015, ultra-diffuse galaxies are thought cosmic laboratories for Dark Matter. Surely, astronomers thought, Dark Matter must provide severely needed mass to form these objects so devoid of normal stars. That thinking led van Dokkum and his colleagues to build the Dragonfly Telephoto Array, a telescope in New Mexico created for the express purpose of scrutinizing ultra-diffuse galaxies. The researchers initially used Dragonfly to study a different galaxy, which possesses an almost inconceivably gargantuan amount of dark matter, a “weird” result in and of itself. When van Dokkum and his team found NGC 1052-DF2, they expected to see something similar.

“Instead we saw the opposite, leading to this remarkable conclusion that there’s actually no room for dark matter at all in this thing,” van Dokkum says. “It’s not something we were looking for or expecting. At all. But you go in the directions the data takes you, even if it’s in contradiction to what you’ve found before.”

In Dragonfly images, NGC 1052-DF2 looked like a standard ultra-diffuse galaxy. But when the team compared them to a better image from the Sloan Digital Sky Survey, they found a surprising mismatch. What had seemed to be dim basic galactic structures in Dragonfly’s view appeared as point-like sources in the Sloan image. To resolve the discrepancy, the team scrutinized the galaxy with the Hubble Space Telescope, the W.M. Keck Observatory and the Gemini Observatory, the latter two on giant volcano Mauna Kea in Hawaii.

The point sources proved to be 10 globular clusters—compact and spherical groupings of stars orbiting the galaxy’s core. The researchers then set about measuring the movements of the clusters as a way to estimate the galaxy’s total mass. Simply put, the velocity at which clusters orbit a galaxy is related to the amount of matter—normal or dark—that a galaxy contains. Using information from the Keck telescopes, the team found the globular clusters were moving much more slowly than expected. And therefrom the tale above…

2) Without modifying vastly the age of the universe, as I boldly suggest, there are a few theories to explain how galaxies like NGC 1052-DF2 could come together without being seeded by Dark Matter (as LCDM necessarily has it). That would be a downer (for me!) but, in the interest of scientific fairness, let’s mention them.

It could be that NGC 1052-DF2 was once a glob of gas perturbed by another unseen (?) galaxy nearby, sparking DF2 star formation. Or, van Dokkum speculates, perhaps this ultra-diffuse, dark-matter-free galaxy arose from two streams of gas that collided and compressed to form a scattering of stars. Another idea, first proposed more than two decades ago by Yale astronomer Priyamvada Natarajan, suggests galaxies like NGC 1052-DF2 form from galaxy-sized globs of gas clumping together in jets ejected by supermassive black holes in large galaxies’ hearts. NGC1052-DF2 does reside in a region where such things could occur, as it lies near a giant elliptical galaxy, those are the largest galaxies, with a supermassive black hole at its heart.

Notice that, in any case, it looks bad for MOND… MOND has several variants, but, basically, says that, at the scale of 50,000 light years (say) gravity, as described by the French astronomer Ismael Bullaldius (Ismaël Boulliau), a notion picked up by Hookes, Newton, etc. and amply confirmed since on the scale of the Solar System, is actually false. Thus the virial theorem (see above), at the scale of R = 50,000 light years, should be false. But above, everybody (not just me, but also the honorable professional astronomers) assumed it was true! Not just that, but the pull of gravity was observed to be just as needed. MOND assumes it’s stronger! So MOND, in case there is indeed NO apparent Dark Matter in NGC 1052-DF2, predicts the existence of NEGATIVE mass (reference the movies Avatar? I presume?) Laughter, please!

In any case, time will tell… Paradigm shift, or overlooked subtleties? Big telescopes are coming soon to a desert near you…

Of God, Mice, And Men Who Believe They Created The Universe

February 8, 2018

When theists say that the universe exists because of God, they are saying that the universe exists, because of some agent they know: that make those theists vastly superior to us, simple miscreants, who do not happen to be acquainted with what, or who, created all and everything. Surely, those superior beings should lead us? So what sounds metaphysical, by asserting a “God” boils down to claiming a higher place in an all too human hierarchy.

Universe” means literally, “turned into one”, whereas “multiverse” would be: “turned into many”. So the set of all multiverses is the universe. (So the alleged existence of “multiverse” is akin to Bertrand Russell’s famous paradox of the set whose elements are not elements of itself; Russell’s paradox brought down mathematical logic as it had been known prior; present day physicists have been repeating that mistake, from lack of basic culture in the matter of mathematical logic!)

If we were to claim, and, or, even worse, have the feeling, that we know why the universe exists, we would be claiming, or have the impression, that we were God. This is not the business of physics, only the business of those who want us to be guided by absolutism.

Alexander the Great, seeing his blood flow, asked himself that question: am I a God? His Greek and Macedonian companions laughed him off. Later, on the advice of his mom, Olympia, Alexander ordered the old, most senior generalissimo Antipater, a companion of Alexander’s father, from Greece to Babylon. Antipater refused to obey. Antipater’s youngest son was Alexander’s page. Alexander found himself ceasing to be, before he could even organize his affairs.

We are both everything and nothing relative to the universe. The key to wisdom, is to keep a balance.

Man, playing God, touches man, playing Adam. All very touching, self-obsessing, self-gratifying, self-glorifying mental, self-stimulation, and self-mutilation.

The universe is, what it is. Science can describe it, not explain how it came to be. That is the proper mood that wisdom should embrace. Embracing the humility of reality, so we can unleash the power of truth.

Let theologians, dinosaurian conservatives, the Politically Correct and the Perfect Cretins, among others, try to learn this: We have to embrace the way things are, before we can hope to change what needs to be changed. And there is plenty of the latter. So stop claiming some human beings know why there is all there is. They don’t. They, and, or, their supporters just want everything you could possibly imagine, and then more.

Patrice Aymé

Note 1: the comment above was an answer to: “Why Is There Something, Rather Than Nothing?
Posted on February 8, 2018 by Sean Carroll
A good question!

Or is it?”

In it, Sean points out notions which I have exposed in the past, but are worth repeating, as many physicists, let alone philosophers and theologians, don’t get them. First of all Sean basically points out that the universe just is (as I said above, by definition of this neuronal activity!). And secondly Sean Carroll, a famous Cal Tech cosmologist, points out that all too many professional physicists don’t even understand that physics, as presently understood, doesn’t explain the universe! In other words, as I have said for decades, all too many physicists take themselves for God! (That is in the same meta category as Niels Bohr’s famous retort to Albert Einstein:”Stop telling God what to do!“)

“The right question to ask isn’t “Why did this happen?”, but “Could this have happened in accordance with the laws of physics?” As far as the universe and our current knowledge of the laws of physics is concerned, the answer is a resounding “Yes.” The demand for something more — a reason why the universe exists at all — is a relic piece of metaphysical baggage we would be better off to discard.

This perspective gets pushback from two different sides. On the one hand we have theists, who believe that they can answer why the universe exists, and the answer is God. As we all know, this raises the question of why God exists; but aha, say the theists, that’s different, because God necessarily exists, unlike the universe which could plausibly have not. The problem with that is that nothing exists necessarily, so the move is pretty obviously a cheat. I didn’t have a lot of room in the paper to discuss this in detail (in what after all was meant as a contribution to a volume on the philosophy of physics, not the philosophy of religion), but the basic idea is there. Whether or not you want to invoke God, you will be left with certain features of reality that have to be explained by “and that’s just the way it is.” (Theism could possibly offer a better account of the nature of reality than naturalism — that’s a different question — but it doesn’t let you wiggle out of positing some brute facts about what exists.)

The other side are those scientists who think that modern physics explains why the universe exists. It doesn’t! One purported answer — “because Nothing is unstable” — was never even supposed to explain why the universe exists; it was suggested by Frank Wilczek as a way of explaining why there is more matter than antimatter. But any such line of reasoning has to start by assuming a certain set of laws of physics in the first place. Why is there even a universe that obeys those laws? This, I argue, is not a question to which science is ever going to provide a snappy and convincing answer. The right response is “that’s just the way things are.” It’s up to us as a species to cultivate the intellectual maturity to accept that some questions don’t have the kinds of answers that are designed to make us feel satisfied.”

Note 2: Swiss citizen Tariq Ramadan, the world’s most famous  Islamist propagandist, holder of two chairs (no less!) at Oxford University, and now in a French prison, was going around the world grievously beating and raping women. Why? Because, precisely, he wanted everything, and that included beating up handicapped women. Even now, as he sits in prison, he enjoys his power: immensely powerful organizations behind him, the sort who made him an Oxford Don, are threatening many more women, who also want to file complaints against Ramadan, but are afraid to do so. The human species is naturally metaphysical. Ramadan wanted to create a universe where he and his ilk could hurt and terrorize women at will. This is not any different from telling us that Muhammad flew to Jerusalem, the capital of Israel, on a winged horse: it is outrageous, but it creates a universe, and its cause (and in this case Islamists are the cause of said universe!)

DOING AWAY WITH INFINITY SOLVES MUCH MATH & PHYSICS

January 11, 2018

Particle physics: Fundamental physics is frustrating physicists: No GUTs, no glory, intones the Economist, January 11, 2018. Is this caused by a fundamental flaw in logic? That’s what I long suggested.

Says The Economist:“Persistence in the face of adversity is a virtue… physicists have been nothing if not persistent. Yet it is an uncomfortable fact that the relentless pursuit of ever bigger and better experiments in their field is driven as much by belief as by evidence. The core of this belief is that Nature’s rules should be mathematically elegant. So far, they have been, so it is not a belief without foundation. But the conviction that the truth must be mathematically elegant can easily lead to a false obverse: that what is mathematically elegant must be true. Hence the unwillingness to give up on GUTs and supersymmetry.”

Mathematical elegance? What is mathematics already? What maybe at fault is the logic brought to bear in present day theoretical physics. And I will say even more: all of today logic may be at fault. It’s not just physics which should tremble. The Economist gives a good description of the developing situation, arguably the greatest standstill in physics in four centuries:

“In the dark

GUTs are among several long-established theories that remain stubbornly unsupported by the big, costly experiments testing them. Supersymmetry, which posits that all known fundamental particles have a heavier supersymmetric partner, called a sparticle, is another creature of the seventies that remains in limbo. ADD, a relative newcomer (it is barely 20 years old), proposes the existence of extra dimensions beyond the familiar four: the three of space and the one of time. These other dimensions, if they exist, remain hidden from those searching for them.

Finally, theories that touch on the composition of dark matter (of which supersymmetry is one, but not the only one) have also suffered blows in the past few years. The existence of this mysterious stuff, which is thought to make up almost 85% of the matter in the universe, can be inferred from its gravitational effects on the motion of galaxies. Yet no experiment has glimpsed any of the menagerie of hypothetical particles physicists have speculated might compose it.

Despite the dearth of data, the answers that all these theories offer to some of the most vexing questions in physics are so elegant that they populate postgraduate textbooks. As Peter Woit of Columbia University observes, “Over time, these ideas became institutionalised. People stopped thinking of them as speculative.” That is understandable, for they appear to have great explanatory power.”

A lot of the theories found in theoretical physics “go to infinity”, and a lot of their properties depend upon infinity computations (for example “renormalization”). Also a lot of problems which appear and that, say, “supersymmetry” tries to “solve”, have to do with turning around infinite computations which go mad for all to see. For example, plethora of virtual particles make Quantum Field Theory miss reality by a factor of 10^120. Thus curiously, Quantum Field Theory is both the most precise, and most false theory ever devised. Confronted to all this, physicists have tried to do what has worked in the past, liked finding the keys below the same lighted lamp post, and counting the same angels on the same pinhead.

A radical way out presents itself. It is simple. And it is global, clearing out much of logic, mathematics and physics, of a dreadful madness which has seized those fields: INFINITY. Observe that infinity itself is not just a mathematical hypothesis, it is a mathematically impossible hypothesis: infinity is not an object. Infinity has been used as a device (for computations in mathematics). But what if that device is not an object, is not constructible?

Then lots of the problems theoretical physics try to solve, a lot of these “infinities“, simply disappear. 

Colliding Galaxies In the X Ray Spectrum (Spitzer Telescope, NASA). Very very very big is not infinity! We have no time for infinity!

The conventional way is to cancel particles with particles: “as a Higgs boson moves through space, it encounters “virtual” versions of Standard Model particles (like photons and electrons) that are constantly popping in and out of existence. According to the Standard Model, these interactions drive the mass of the Higgs up to improbable values. In supersymmetry, however, they are cancelled out by interactions with their sparticle equivalents.” Having a finite cut-off would do the same.

A related logic creates the difficulty with Dark Matter, in my opinion. Here is why. Usual Quantum Mechanics assumes the existence of infinity in the basic formalism of Quantum Mechanics. This brings the non-prediction of Dark Matter. Some physicists will scoff: infinity? In Quantum Mechanics? However, the Hilbert spaces which Quantum Mechanical formalism uses are often infinite in extent. Crucial to Quantum Mechanics formalism, but still extraneous to it, festers an ubiquitous instantaneous collapse (semantically partly erased as “decoherence” nowadays). “Instantaneous” is the inverse of “infinity” (in perverse infinity logic). If the later has got to go, so does the former. As it is Quantum Mechanics depends upon infinity. Removing the latter requires us to change the former.

Laplace did exactly this with gravity around 1800 CE. Laplace removed the infinity in gravitation, which had aggravated Isaac Newton, a century earlier. Laplace made gravity into a field theory, with gravitation propagating at finite speed, and thus predicted gravitational waves (relativized by Poincaré in 1905).

Thus, doing away with infinity makes GUTS’ logic faulty, and predicts Dark Matter, and even Dark Energy, in one blow.

If one new hypothesis puts in a new light, and explains, much of physics in one blow, it has got to be right.

Besides doing away with infinity would clean out a lot of hopelessly all-too-sophisticated mathematics, which shouldn’t even exist, IMHO. By the way, computers don’t use infinity (as I said, infinity can’t be defined, let alone constructed).

Sometimes one has to let go of the past, drastically. Theories of infinity should go the way of those crystal balls theories which were supposed to explain the universe: silly stuff, collective madness.

Patrice Aymé

Notes: What do I mean by infinity not constructible? There are two approaches to mathematics:1) counting on one’s digits, out of which comes all of arithmetics. If one counts on one’s digits, one runs of digits after a while, as any computer knows, and I have made into a global objection, by observing that, de facto, there is a largest number (contrarily to what fake, yet time-honored, 25 centuries old “proofs” pretend to demonstrate; basically the “proof” assumes what it pretends to demonstrate, by claiming that, once one has “N”, there is always “N + 1”).

2) Set theory. Set theory is about sets. An example of “set” could be the set of all atoms in the universe. That may, or may not, be “infinite”. In any case, it is not “constructible”, not even to be extended consideration, precisely because it is so considerable (conventional Special Relativity, let alone basic practicality prevent that; Axiomatic Set Theory a la Bertrand Russell has tried to turn around infinity with the notion of  a proper class…)

In both 1) and 2), infinite can’t be considered, precisely, because it doesn’t finish.

Some will scoff, that I am going back to Zeno’s paradox, being baffled by what baffled Zeno. But I know Zeno, he is a friend of mine. My own theory explains Zeno’s paradox. And, in any case, so does Cauchy’s theory of limits (which depends upon infinity only superficially; even infinitesimal theory, aka non-standard analysis, from Leibnitz + Model Theory survives my scathing refounding of all of logics, math, physics).  

By the way, this is all so true that mathematicians have developed still another notion, which makes, de facto, logic local, and spurn infinity, namely Category Theory. Category Theory is very practical, but also an implicit admission that mathematicians don’t need infinity to make mathematics. Category Theory has now become fashionable in some corners of theoretical physics.

3) The famous mathematician Brouwer threw out some of the famous mathematical results he had himself established, on grounds somewhat similar to those evoked above, when he promoted “Intuitionism”. The latter field was started by Émile Borel and Henri Lebesgue (of the Lebesgue integral), two important French analysts, viewed as  semi-intuitionists. They elaborated a constructive treatment of the continuum (the real line, R), leading to the definition of the Borel hierarchy. For Borel and Lebesgue considering the set of all sets of real numbers is meaningless, and therefore has to be replaced by a hierarchy of subsets that do have a clear description. My own position is much more radical, and can be described as ultra-finitism: it does away even with so-called “potential infinity” (this is how I get rid of many infinities in physics, which truly are artefacts from mathematical infinity).  I expect no sympathy: thousands of mathematicians live off infinity.

4) Let me help those who want to cling to infinity. I would propose two sort of mathematical problems: 1) those who can be solved when considered in Ultra Finite mathematics  (“UF”). 2) Those which stay hard, not yet solved, even in UF mathematics.

DARK MATTER-ENERGY, Or How Inquiry Proceeds

September 7, 2016

How to find really new knowledge? How do you find really new science? Not by knowing the result: this is what we don’t have yet. Any really new science will not be deduced from pre-existing science. Any really new knowledge will come out of the blue. Poetical, and, or, emotional logic will help before linear logic does.

A top lawyer, admitted to the US Supreme Court, and several countries. told me that the best judges know, emotionally, where they want to go, and then build a logical case for it.

The case of Dark Matter is telling: this increasingly irritating elephant in the bathroom has been in evidence for 80 years, lumbering about, smashing the most basic concepts of physics. As the encumbering beast did not fit existing science, it was long religiously ignored by the faithful of the church of standard physics, as a subject not worthy of deep inquiry by very serious physicists. Now Dark Matter, five times more massive than Standard Model matter, is clearly sitting heavily outside of the Standard Model, threatening to crush it into irrelevance. Dark matter obscures the lofty pretense of known physics to explain everything (remember the grandly named TOE, the so-called “Theory Of Everything“? That TOE was a fraud, snake oil, because mainstream physics celebrities crowed about TOE, while knowing perfectly well that Dark Matter dwarfed standard matter, and while being completely outside of the Standard Model).

Physicists are presently looking for Dark Matter, knowing what they know, namely that nature has offered them a vast zoo of particles, many of them without rhyme or reason. or symmetries to “explain” (indeed, some have rhyme, a symmetry, a mathematical group such as SU3 acting upon them; symmetries have revealed new particles, sometimes). 

Bullet Cluster, 100 Million Years Old. Two Galaxies Colliding. The Dark Matter, In Blue, Is Physically Separated From the Hot, Standard Matter Gas, in Red.

Bullet Cluster, 100 Million Years Old. Two Galaxies Colliding. The Dark Matter, In Blue, Is Physically Separated From the Hot, Standard Matter Gas, in Red.

This sort of picture above is most of what we presently have to guess what Dark Matter could be; the physical separation of DM and SM is most telling to me: it seems to indicate that SM and DM do not respond to the same forces, something that my Quantum theory predicts; it’s known that Dark Matter causes gravitational lensing, as one would expect, as it was first found by its gravitational effects, in the 1930s…

However, remember: a truly completely new (piece of) science cannot be deduced from pre-existing paradigm. Thus, if Dark Matter was really about finding a new particle type, it would be interesting, but not as interesting as it would be, if it were not, after all, a new particle type, but instead, a consequence from a completely new law in physics.

This is the quandary about finding truly completely new science. It can never be deduced from ruling paradigms, and may actually overthrow them. What should then be the method to use? Can Descartes and Sherlock Holmes help? The paradigm presented by Quantum Physics helps. The Quantum looks everywhere in space to find solutions: this is where its (“weird”) nonlocality comes in. Nonlocality is crucial for interference patterns and for finding lowest energy solutions, as in the chlorophyll molecule. This suggests that our minds should go nonlocal too, and we should look outside of a more extensive particle zoo to find what Dark Matter is.

In general, searching for new science should be by looking everywhere, not hesitating to possibly contradict what is more traditional than well established.

An obvious possibility to explain Dark Matter is, precisely, that Quantum Physics is itself incomplete, and generating Dark Matter, and Dark Energy, in places where said incompleteness (of the present Quantum theory) would be most blatant: large cosmic distances.

More precisely, Quantum processes, stretched over cosmic distances, instead of being perfectly efficient and nonlocal over gigantically cosmic locales, could leave a Quantum mass-energy residue, precisely in the places where extravagant cosmic stretching of Quanta occurs (before “collapse”, aka “decoherence”). (I call this theory of mine SQPR, Sub Quantum Patrice Reality.)

This would happen if what one should call the “Quantum Interaction” proceeds at a finite speed (much faster than c, by a factor of at least 10^23…). It’s enough.

The more one does find a conventional explanation (namely a new type of particle) for Dark Matter, the more likely my style of explanation is likely. How could one demonstrate it? Not by looking for new particles, but by conducting new and more refined experiments in the foundations of Quantum Physics.

If this guess is correct, whatever is found askew in the axioms of present Quantum Physics could actually help future Quantum Computer technology (because the latter works with Quantum foundations directly, whereas conventional high energy physics tend to eschew the wave aspects, due to the high frequencies involved).

Going on a tangent is what happens when the central, attractive force, is let go. A direct effect of freedom. Free thinking is tangential. We have to learn to produce tangential thinking.

René Descartes tried to doubt the truth of all his beliefs to determine which beliefs he could be certain were true. However, at the end of “The Meditations” he hastily conclude that we can distinguish between dream and reality. It is not that simple. The logic found in dreams is all too similar to the logic used by full-grown individuals in society.

Proof? Back to Quantum Physics. On the face of it, the axioms of Quantum Physics have a dream like quality (there is no “here”, nor “there”, “now” is everywhere, and, mysteriously, the experiment is Quantum, whereas the “apparatus” is “classical”). Still, most physicists, after insinuating they have figured out the universe, eschew the subject carefully.  The specialists of Foundations are thoroughly confused: see Sean Carroll, http://www.preposterousuniverse.com/blog/2013/01/17/the-most-embarrassing-graph-in-modern-physics/

However unbelievable Quantum Physics, however dream-like it is, physicists believe in it, and don’t question it anymore than cardinals would Jesus. Actually, it’s this dream-like nature which, shared by all, defines the community of physicists. Cartesian doubt, pushed further than Descartes did, will question not just the facts, the allegations, but the logic itself. And even the mood behind it.

Certainly, in the case of Dark Matter, some of the questions civilization has to ask should be:

  1. How sure are we of the Foundations of Quantum Physics? Answer: very sure, all too sure!
  2. Could not it be that Dark Matter is a cosmic size experiment in the Foundations of Quantum Physics?

Physics, properly done, does not just question the nature of nature. Physics, properly done, questions the nature of how we find out the nature of anything. Physics, properly done, even questions the nature of why we feel the way we do. And the way we did. About anything, even poetry. In the end, indeed, even the toughest logic is a form of poetry, hanging out there, justified by its own beauty, and nothing else. Don’t underestimate moods: they call what beauty is.

Patrice Ayme’

Astronomy Domine

April 6, 2016

Astronomy domine is a song much played in philosophy, not just by Pink Floyd, ever since there are men, and they observe. (Homo Erectus probably observed the last fabulous Galactic Core Eruption, two million years ago.)

Before feeding the pocketbooks of the greedy, science feeds the imagination of poets.

Astronomy has been at the forefront of physics, at least since Buridan (14th Century). Buridan applied his notion of impetus to explain that planets went around in circles from what we now call inertia. In Greek Antiquity, a large, wagon sized meteorite landed in Northern Greece, and was visited for centuries (it may have been a piece of Halley’s comet, which whizzed by spectacularly close in 466 BCE).

A Place Of Great Eruptions, Past & Future. Eta Carinae Nebula, At Least A Couple of Giant Stars, The Lightest One At Least 30 Sun Masses, the Largest Maybe As Much As 220 Solar Masses, 7,500 Light Years Away. Five Million Times The Luminosity Of the Sun. Stellar Natures & Explosions Are Far From Fully Understood!

A Place Of Great Eruptions, Past & Future. Eta Carinae Nebula, At Least A Couple of Giant Stars, The Lightest One At Least 30 Sun Masses, the Largest Maybe As Much As 220 Solar Masses, 7,500 Light Years Away. Five Million Times The Luminosity Of the Sun. Stellar Natures & Explosions Are Far From Fully Understood!

Supernova explosions are awesome: the most luminous one ever detected had a peak luminosity 570 BILLION times the luminosity of the Sun (yes, (570) 10^9 Suns; that was seen in 2015).

Supernovae are us. Supernovae create most of chemistry: the extremely high temperatures of their explosions enable light nuclei to smash into each other, and fuse, making most elements of the periodic table.

There are two main types of stars which explode as supernovae: white dwarfs and massive giant stars. In the so-called Type Ia supernovae, gases falling onto a white dwarf raise its mass until it nears a critical level, the Chandrasekhar limit, resulting in an explosion when the mass approaches exactly 1.44 Solar Mass. In Type Ib/c and Type II supernovae, the progenitor star is a massive star which runs out of fuel to power its nuclear fusion reactions and collapses in on itself, reaching astounding temperatures as it implodes, and then explodes.

Supernova science is very far from finished knowledge. Even the nature of the Crab Nebula supernova, which was seen to explode in 1054 CE, is not clear (it is known it was a big star, more than 8 Solar Masses; it left a pulsar).

Even the Crab was philosophically interesting in devious ways: the explosion was duly recorded by Europeans and Chinese. However the Muslims tried very hard not to see it (a mention was recently found). Indeed, the heavens, for desert savages, are supposed to be messages from God, and God playing games with stars was apparently not kosher…

Type Ia supernovae have completely changed our idea of the universe in the last two decades. (According to your modest servant, other types of supernovae may change our view of the universe even more dramatically. See the conclusion!)

Eta Carinae is the only star known to produce ultraviolet laser emission!

There is some philosophy to be extracted from Eta Carinae: if a star, or a system of gravitationally bound stars, can be that exotic, how sure are we from the astrophysics we think we know?

I am not the only one who thought of this. The teams who determined the accelerating acceleration of the universe (“Dark Energy”), had to exclude weird, sort-of Type Ia Supernovae… from their statistics (pre-selecting the population of explosions they would apply statistics on…). There are now other ways to detect Dark Energy (and they give the same results as the pre-selected Type Ia supernovae studies). So the results have been confirmed.

However my position is more subtle, and general. How sure are we of the astrophysics we have, to the point that we can claim that stars are unable to create all the known elements? In the proportion observed?

I am no specialist of astrophysics. But, as a philosopher, I have seen the science evolve considerably, so I think we cannot be sure that we absolutely need the hellish temperatures of the Big Bang to generate all observed elements.

Very large stars (600 Solar masses) have now been observed. They don’t live very long. I don’t see why stars thousands of Solar Masses, living only for a few hundred years, before exploding, are not possible. During these so-far-unconceived apocalypses, nucleogenesis could well follow unexpected ways.

And that could well remove one of the main arguments for the Big Bang.

Patrice Ayme’

QUANTUM FLUCTUATIONS & ARROW OF TIME

January 18, 2016

What is time? Quantum Physics gives an answer, classical physics does not. Quantum Physics suggests that time is the set of all irreversible processes. This is a world first, so it requires some explanations. I have been thinking, hard, of these things all my life. Sean Carroll, bless his soul, called my attention to the new development that mainstream physicists are starting to pay attention to my little kingdom(so I thank him).

***

SCIENCE IS WHAT WE DO:

Sean Carroll in “Quantum Fluctuations”:

“Let’s conjure some science up in here. Science is good for the soul.”

Patrice Ayme’: Why is science good for the soul? Because the human soul is centered on finding truth. Science is truth, thus science is human. Nothing is more human than science. Science is what humans do. Another thing humans do is art, and it tries to both duplicate, distort, and invent new nature, or interpretations, interpolations, and suggestions, of and from, nature:

Claim: Quantum Interference Is An Irreversible Process, Time's Arrows All Over. Quantum Interference Goes From Several Waves, To One Geometry. Soap Bubbles Brim With Quantum Interference..

Claim: Quantum Interference Is An Irreversible Process, Time’s Arrows All Over. Quantum Interference Goes From Several Waves, To One Geometry. Soap Bubbles Brim With Quantum Interference..

SC: …what are “quantum fluctuations,” anyway? Talk about quantum fluctuations can be vague. There are really 3 different types of fluctuations: Boltzmann, Vacuum, & Measurement. Boltzmann Fluctuations are basically classical: random motions of things lead to unlikely events, even in equilibrium.

Patrice Ayme’: As we will see, or we have already seen in my own “Quantum Wave”, Quantum Fluctuations are just the Quantum Waves. Richard Feynman, at the end of his chapter on entropy in the Feynman Lectures on Physics, ponders how to get an arrow of time in a universe governed by time-symmetric underlying laws. Feynman:

“So far as we know, all the fundamental laws of physics, such as Newton’s equations, are reversible. Then where does irreversibility come from? It comes from order going to disorder, but we do not understand this until we know the origin of the order. Why is it that the situations we find ourselves in every day are always out of equilibrium?”

Patrice Ayme’: Is that really true? Are equations time-symmetric? Not really. First, equations don’t stand alone. Differential equations depend upon initial conditions. Obviously, even if the equations are time-symmetric, the initial conditions are not: the final state cannot be exchanged with the initial state.

Quantum Physics make this observation even more important. The generic Quantum set-up depends upon a geometric space S in which the equation(s) of motion will evolve. Take for example the 2-slit: the space one considers generally, S, is the space AFTER the 2-slit. The one before the 2-slit, C, (for coherence) is generally ignored. S is ordered by Quantum interference.

The full situation is made of: (C, S & Quantum interference). it’s not symmetric. The Quantum depends upon the space (it could be a so-called “phase space”) in which it deploys. That makes it time-assymmetric. An example: the Casimir Effect.

***

QUANTUM PHYSICS IS ABOUT WAVES:

Sean Carroll: “Nothing actually “fluctuates” in vacuum fluctuations! The system can be perfectly static. Just that quantum states are more spread out.”

Indeed. Quantum states are, intrinsically, more spread out. They are NON-LOCAL. Why?

One has to go back to the basics. What is Quantum Physics about? Some, mostly the “Copenhagen Interpretation” followers, claim Quantum Physics is a subset of functional analysis. (The famous mathematician Von Neumann, one of the creators of Functional Analysis, was the founder of this system of thought; this scion of plutocrats, famously, yet satanically, claimed that De Broglie and Bohmian mechanics were impossible… Von Neumann had made a logical mistake; maybe that had to do with being involved with the satanic part of the American establishment, as, by then, that Hungarian had migrated to the USA and wanted to be called “Johnny”!).

The Quantum-as-functional analysis school became dominant. It had great successes in the past. It allows to view Quantum Physics as “Non Commutative Geometry”. However, contrarily to repute, it’s not the most fundamental view. (I have my own approach, which eschews Functional Analysis.)

But let’s backtrack. Where does Quantum-as-functional-analysis come from? A Quantum system is made of a (“configuration”) space S and an equation E (which is a Partial Differential Equation). Out of S and E is created a Hilbert Space with a basis, the “eigenstates”.

In practice, the eigenstates are fundamental waves. They can be clearly seen, with the mind’s eye, in the case of the Casimir Effect with two metallic plates: there is a maximal size for the electromagnetic wavelengths between the plates (as they have to zero out where they touch the metal).

The notion of wave is more general than the notion of eigenstate (Dirac pushed, successfully, the notion of wave so far that it created space, Spinor Space, and Quantum Field Theory has done more of the same, extending the general mood of De Broglie-Dirac to ever fancier Lagrangians, energy expression guiding the waves according to De Broglie scheme).

Historically, De Broglie suggested in 1923 (several publications to the French Academy of Science) that to each particle was associated a (relativistic) wave. De Broglie’s reasons were looked at by Einstein, who was impressed (few, aside from Einstein could understand what De Broglie said; actually De Broglie French jury thesis, which had two Nobel prizes, was so baffled by De Broglie’s thesis, that they sent it to Einstein, to ask him what he thought. Einstein replied with the greatest compliment he ever made to anyone: “De Broglie has started to lift the great veil,” etc…).

The De Broglie’s wave appears on page 111 of De Broglie’s 1924 thesis, which has 118 pages (and contains, among other things, the Schrödinger wave equation, and, of course, the uncertainty principle, something obvious: De Broglie said all particles were guided by waves whose wavelengths depended upon their (relativistic) energy. An uncertainty automatically appears when one tries to localize a particle (that is, a wave) with another particle (that is, another wave!)

***

CLASSICAL PHYSICS HAS NO ARROW OF TIME:

Consider an empty space S. If the space S is made available to (classical) Boltzmann particles, S is progressively invaded by (classical) particles occupying ever more states.

Classical physicist (Boltzmann, etc.) postulated the Second Law of Thermodynamics: something called entropy augmented during any process. Problem, rather drastic: all classical laws of physics are reversible! So, how can reversible physics generate a time-irreversible law? Classical physicist have found no answer. But I did, knight in shining armor, mounted on my powerful Quantum Monster:

***

QUANTUM PROCESSES CREATE IRREVERSIBLE GEOMETRIES:

When the same space S is made available as part of a Quantum System, the situation is strikingly different. As Sean Carroll points out, the situation is immediately static, it provides an order (as Bohm insisted it did). The observation is not new: the De Broglie waves provided an immediate explanation of the stability of electronic waves around atoms (thus supporting Bohr’s “First, or Semi-Classical, Quantum Theory”.

What’s a difference of a Quantum System with a classical system? The classical system evolves, from a given order, to one, more disordered. The Quantum system does not evolve through increasing disorder. Instead, the space S, once accessed, becomes not so  much an initial condition, but a global order.

The afore-mentioned Hilbert Space with its eigenstates is that implicit, or implicate (Bohm) order. So the Quantum System is static in an important sense (from standing Quantum Waves, it sorts of vibrates through time).

Thus Quantum Systems have an intrinsic time-assymmetry (at least when dealing with cavities). When there are no cavities, entanglement causes assymmetry: once an interaction has happened, until observation, there is entanglement. Before interaction, there was no entanglement. Two classical billiards balls are not entangled either before or after they interact, so the interaction by collision is fully time reversible.

Entanglement is also something waves exhibit, once they have interacted and not before, which classical particles are deprived of.

Once more we see the power of the Quantum mindset for explaining the world in a much more correct, much simpler, and thus much more powerful way. The Quantum even decides what time is.

So far as we know, all the classical fundamental laws of physics, such as Newton’s equations, are reversible. Then were does irreversibility come from? It does NOT come, as was previously suggested, from order going to disorder.

Quite the opposite: irreversibility comes from disorder (several waves)going to order (one wave, ordered by its surrounding geometry). And we do understand the origin of the order: it’s the implicit order of Quantum Waves deployed.

You want to know the world? Let me introduce you to the Quantum, a concept of wealth, taste and intelligence.

Last and not least: if I am right, the Quantum brings the spontaneous apparition of order, the exact opposite picture which has constituted the manger in which the great cows of physics have found their sustenance. Hence the fact that life and many other complicated naturally occurring physical systems are observed to create order in the universe are not so baffling anymore. Yes, they violate the Second Law of Thermodynamics. However, fundamentally, that violated the spirit, the principle of the universe, the Quantum itself.

Patrice Ayme’

BEING FROM DOING: EFFECTIVE ONTOLOGY, Brain & Consciousness

December 29, 2015

Thesis: Quantum Waves themselves are what information is (partly) made of. Consciousness being Quantum, shows up as information. Reciprocally, information gets Quantum translated, and then builds the brain, then the mind, thus consciousness. So the brain is a machine debating with the Quantum. Let me explain a bit, while expounding on the way the theory of General Relativity of Ontological Effectiveness, “GROE”:

***

What is the relationship between the brain and consciousness? Some will point out we have to define our terms: what is the brain, what is consciousness? We can roll out an effective definition of the brain (it’s where most neurons are). But consciousness eludes definition.

Still, that does not mean we cannot say more. And, from saying more, we will define more.

Relationships between definitions, axioms, logic and knowledge are a matter of theory:

Take Euclid: he starts with points. What is a point? Euclid does not say, he does not know, he has to start somewhere. However where that where exactly is may be itself full of untoward consequences (in the 1960s, mathematicians working in Algebraic Geometry found points caused problems; they have caused problems in Set Theory too; vast efforts were directed at, and around points). Effectiveness defines. Consider this:

Effective Ontology: I Compute, Therefore That's What I Am

Effective Ontology: I Compute, Therefore That’s What I Am

Schematic of a nanoparticle network (about 200 nanometres in diameter). By applying electrical signals at the electrodes (yellow), and using artificial evolution, this disordered network can be configured into useful electronic circuits.

Read more at: http://phys.org/news/2015-09-electronic-circuits-artificial-evolution.html#jCp

All right, more on my General Relativity of Ontological Effectiveness:

Modern physics talks of the electron. What is it? Well, we don’t know, strictly speaking. But fuzzy thinking, we do have a theory of the electron, and it’s so precise, it can be put in equations. So it’s the theory of the electron which defines the electron. As the former could, and did vary, so did the latter (at some point physicist Wheeler and his student Feynman suggested the entire universe what peopled by just one electron going back and forth in time.

Hence the important notion: concepts are defined by EFFECTIVE THEORIES OF THEIR INTERACTION with other concepts (General Relativity of Ontological Effectiveness: GROE).

***

NATURALLY Occurring Patterns Of Matter Can Recognize Patterns, Make Logic:

Random assemblies of gold nanoparticles can perform sophisticated calculations. Thus Nature can start computing, all by itself. There is no need for the carefully arranged patterns of silicon.

Classical computers rely on ordered circuits where electric charges follow preprogrammed rules, but this strategy limits how efficient they can be. Plans have to be made, in advance, but the possibilities become vast in numbers at such a pace that the human brain is unable to envision all the possibilities. The alternative is to do as evolution itself creates intelligence: by a selection of the fittest. In this case, a selection of the fittest electronic circuits.

(Selection of the fittest was well-known to the Ancient Greeks, 25 centuries ago, 10 centuries before the Christian superstition. The Ancient Greeks, used artificial and natural selection explicitly to create new breeds of domestic animals. However, Anglo-Saxons prefer to name things after themselves, so they can feel they exist; thus selection of the fittest is known by Anglo-Saxons as “Darwinian”. Hence soon we will hear about “Darwinian electronics”, for sure!)

“The best microprocessors you can buy in a store now can do 10 to the power 11 (10^11; one hundred billions) operations per second and use a few hundred watts,” says Wilfred van der Wiel of the University of Twente in the Netherlands, a leader of the gold circuitry effort. “The human brain can do orders of magnitude more and uses only 10 to 20 watts.  That’s a huge gap in efficiency.”

To close the gap, one goes back to basics. The first electronic computers, in the 1940s, tried to mimic what were thought at the time to be brain operations. So the European Union and the USA are trying more of the same, to develop “brain-like” computers that do computations naturally without their innards having been specifically laid out for the purpose. For a few years, the candidate  material that can reliably perform real calculations has been found to be gold.

Van der Wiel and colleagues have observed that clumps of gold grains handle bits of information (=electric charge) in the same way that existing microprocessors do.

Clump of grains computing operate as a unit, in parallel, much as it seems neurons do in the brain. This should improve pattern recognition. A pattern, after all, is characterized by dimension higher than one, and so is a clump operating together. A mask to recognize a mask.

Patterns are everywhere, logics itself are patterns.

***

WE ARE WHAT WE DO:

So what am I saying, philosophically? I am proposing a (new) foundation for ontology which makes explicit what scientists and prehistoric men have been doing all along. 

The theory of the nature of being is ontology, the “Logic of Being”. Many philosophers, or pseudo-philosophers have wrapped themselves up in knots about what “Being”. (For example, Heidegger, trained as a Catholic seminarian, who later blossomed as a fanatical professional Nazi, wrote a famous book called “Zein und Zeit”, Being and Time. Heidegger tries at some point to obscurely mumble feelings not far removed from some explicit notions in the present essay.)

Things are defined by what they do. And they do what they do in relation with other things.

Where does it stop? Well, it does not. What we have done is define being by effectiveness. This is what mathematicians have been doing all along. Defining things by how they work produce things, and theories, which work. The obvious example is mathematics: it maybe a castle in the sky, but this castle is bristling with guns, and its canon balls are exquisitely precise, thanks to the science of ballistics, a mathematical creation.

Things are what they do. Fundamental things do few things, sophisticated things do many things, and thus have many ways of being.

Some will say: ‘all right, you have presented an offering to the gods of wisdom, so now can we get back to the practical, such as the problems Europe faces?’

Be reassured, creatures of little faith: Effective Ontology is very practical. First of all, that’s what all of physics and mathematics, and actually all of science rest (and it defines them beyond Karl Popper’s feeble attempt).

Moreover, watch Europe. Some, including learned, yet nearly hysterical commenters who have graced this site, are desperately yelling to be spared from a “Federal Europe“, the dreaded “European Superstate“. The theory of Effective Ontology focuses on the essence of Europe. According to Effective Ontology, Europe is what it does.

And  what does Europe do? Treaties. A treaty, in Latin, is “foedus. Its genitive is foederis, and it gives foederatus, hence the French fédéral and from there, 150 years later in the USA, “federal”. Europe makes treaties (with the Swiss (Con)federation alone, the Europe Union has more than 600 treaties). Thus Europe IS a Federal State.

Effective Ontology has been the driver of Relativity, Quantum Physics, and Quantum Field Theory. And this is precisely why those theories have made so many uncomfortable.

Patrice Ayme’

Why Mathematics Is Natural

April 21, 2015

There is nothing obvious about the mathematics we know. It is basically neurology we learn, that is, that we learn to construct (with a lot of difficulty). Neurology is all about connecting facts, things, ideas, emotions together. We cannot possibly imagine another universe where mathematics is not as given to us, because our neurology is an integral part of the universe we belong to.

Let’s consider the physics and mathematics which evolved around the gravitational law. How did the law arise? It was a cultural, thus neurological, process. More striking, it was a historical process. It took many centuries. On the way, century after century a colossal amount of mathematics was invented, from graph theory, to forces (vectors), trajectories, equations, “Cartesian” geometry, long before Galileo, Descartes, and their successors, were born.

Buridan, around 1330 CE, to justify the diurnal rotation of Earth, said we stayed on the ground, because of gravity. Buridan also wrote that “gravity continually accelerates a heavy body to the end” [In his “Questions on Aristotle”]. Buridan asserted a number of propositions, including some which are equivalent to Newton’s first two laws.

Because, Albert, Your Brain Was Just A Concentrate Of Experiences & Connections Thereof, Real, Or Imagined. "Human Thought Independent of Experience" Does Not Exist.

Because, Albert, Your Brain Was Just A Concentrate Of Experiences & Connections Thereof, Real, Or Imagined. “Human Thought Independent of Experience” Does Not Exist.

At some point someone suggested that gravity kept the heliocentric system together.

Newton claimed it was himself, with his thought experiment of the apple. However it is certainly not so: Kepler believed gravity varied according to 1/d. The French astronomer Bullialdius ( Ismaël Boulliau) then explained why Kepler was wrong, and gravity should vary as, the inverse of the square of the distance, not just the inverse of the distance. So gravity went by 1/dd (Bullialdius was elected to the Royal Society of London before Newton’s birth; Hooke picked up the idea then Newton; then those two had a nasty fight, and Newton recognized Bullialdius was first; Bullialdius now has a crater on the Moon named after him, a reduced version of the Copernicus crater).

In spite of considerable mental confusion, Leonardo finally demonstrated correct laws of motion on an inclined plane. Those Da Vinci laws, more important than his paintings, are now attributed to Galileo (who rolled them out a century later).

It took 350 years of the efforts of the Paris-Oxford school of mathematics, and students of Buridan, luminaries such as Albert of Saxony and Oresme, and Leonardo Da Vinci, to arrive at an enormous arsenal of mathematics and physics entangled…

This effort is generally mostly attributed to Galileo and Newton (who neither “invented” nor “discovered” any of it!). Newton demonstrated that the laws discovered by Kepler implied that gravity varied as 1/dd (Newton’s reasoning, using still a new level of mathematics, Fermat’s calculus, geometrically interpreted, was different from Bulladius).

Major discoveries in mathematics and physics take centuries to be accepted, because they are, basically, neurological processes. Processes which are culturally transmitted, but, still, fundamentally neurological.

Atiyah, one of the greatest living mathematicians, hinted this recently about Spinors. Spinors, discovered, or invented, a century ago by Elie Cartan, are not yet fully understood, said Atiyah (Dirac used them for physics 20 years after Cartan discerned them). Atiyah gave an example I have long used: Imaginary Numbers. It took more than three centuries for imaginary numbers (which were used for the Third Degree equation resolution) to be accepted. Neurologically accepted.

So there is nothing obvious about mathematical and physics: they are basically neurology we learn through a cultural (or experimental) process. What is learning? Making a neurology that makes correspond to the input we know, the output we observe. It is a construction project.

Now where does neurology sit, so to speak? In the physical world. Hence mathematics is neurology, and neurology is physics. Physics in its original sense, nature, something not yet discovered.

We cannot possibly imagine another universe where mathematics is not as given to us, because the neurology it is forms an integral part of the universe we belong to.

Patrice Ayme’