Archive for the ‘Electromagnetism’ Category

Happy In the Sky With New Logics: Einstein’s Error II

August 6, 2016

Einstein assumed reality was localized and definite in one of his famous 1905 papers, and physics never recovered from that ridiculous, out-of-the-blue, wanton, gratuitous error. (The present essay complements the preceding one found in the link). 

At the origin of Quantum Mechanics is Max Planck’s train of thought. Max demonstrated that supposing that electromagnetic energy was EMITTED as packets of energy hf explained the two obvious problems of physics; h is a constant (since then named after Planck), f is the frequency of the light.

Then came, five years later, Einstein. He explained the photoelectric effect’s mysterious features by reciprocating Planck’s picture: light’s energy was RECEIVED as packets of energy hf. Fine.   

However, so doing Einstein claimed that light, LIGHT IN TRANSIT, was made of “LICHT QUANTEN” (quanta of light), which he described as localized. He had absolutely no proof of that. Centuries of observation stood against it. And the photoelectric effect did not necessitate this grainy feature in flight, so did not justify it.  

Thus Einstein introduced the assumption that the ultimate description of nature was that of grains of mass-energy. That was, in a way, nothing new, but the old hypothesis of the Ancient Greeks, the atomic theory. So one could call this the Greco-Einstein hypothesis. The following experiment, conducted in 1921, demonstrated Einstein was wrong. Thus the perpetrator Walther Gerlach, did not get the Nobel, and the Nobel Committee never mentioned the importance of the experiment. Arguably, Gerlach’s experiment was more important than any work of Einstein, thus deserved punishment The Jewish Stern, an assistant of Einstein, got the Nobel alone in 1944, when Sweden was anxious to make friends with the winning “United Nations”: 

Two Points. The Classical Prediction Is A Vertical Smear. It Is Also Einstein’s Prediction. And Incomprehensible In Einstein’s View Of The World.

Two Points. The Classical Prediction Is A Vertical Smear. It Is Also Einstein’s Prediction. And That Smear Is Incomprehensible In Einstein’s View Of The World.

Yet, Einstein’s advocacy of nature as made of grains was obviously wrong: since the seventeenth century, it was known that there were wave effects ruling matter (diffraction, refraction, Newton’s rings). That was so true, Huyghens proposed light was made of waves. Around 1800 CE Young and Ampere proposed proofs of wave nature (2 slit experiment and Poisson’s dot). The final proof of the wave theory was Maxwell’s completion and synthesis of electromagnetism which showed light was an electromagnetic wave (travelling at always the same speed, c).

Einstein’s hypothesis of light as made of grain is fundamentally incompatible with the wave theory. The wave theory was invented precisely to explain DELOCALIZATION. A grain’s definition is the exact opposite.

There is worse.

Spin was discovered as an experimental fact in the 1920s. Interestingly it had been discovered mathematically by the French Alpine mathematician Elie Cartan before World War One, and stumbled upon by Dirac’s invention of the eponymous equation.  

The simplest case is the spin of an electron. What is it? When an electron is put in a magnetic field M, it deviates either along the direction of M (call it M!) or the opposite direction (-M). This sounds innocuous enough, until one realizes that it is the OBSERVER who selects the direction “M” of M. Also there are two angles of deviation only. (The Gerlach experiment was realized with silver (Ag) atoms, but the deviation was caused by a single electron therein.)

Einstein would have us believe that the electron is a grain. Call it G. Then G would have itself its own spin. A rotating charged particle G generates a magnetic field. Call it m. If Einstein were correct, as the direction of M varies, its interaction between the grain G magnetic field m will vary. But it’s not the case: it is as if m did not count. At all. Does not count, at all, whatsoever. It’s all about M, the direction of M.

So Einstein was wrong: there is no grain G with an independent existence, an independent magnetic filed m.

Bohr was right: Einstein was, obviously, wrong. That does not mean that Bohr and his followers, who proclaimed the “Copenhagen Interpretation” were right on other issues. Just like Einstein hypothesized something he did not need, so did the Copenhagists.

Backtrack above: M is determined by the observer, I said (so bleated the Copenhagen herd). However, although M can changed by an observer, clearly an observer is NOT necessary to create a magnetic field M and its direction.

Overlooking that blatant fact, that not all magnetic fields are created by observers, is the source of Copenhagen confusion.

We saw above that correct philosophical analysis is crucial to physics. Computations are also crucial, but less so: a correct computation giving correct results can be made from false hypotheses (the paradigm here is epicycle theory: false axiomatics, the Sun did not turn around the Earth, yet, roughly correct computations produced what was observed).

Out of Quantum Theory came Quantum ElectroDynamics (QED), and, from there, Quantum Field Theory (QFT).  

QED is one of the most precise scientific theory ever. However, there is much more precise: the mass of the photon is determined to be no more than 10^(-60) kilogram (by looking at whether the electromagnetic field of Jupiter decreases in 1/d^2…).

Nevertheless, QED is also clearly the most erroneous physical theory ever (by an order of 10^60). Indeed, it predicts, or rather uses, the obviously false hypothesis that there is some finite energy at each point of space. Ironically enough, it is Einstein and Stern (see above) who introduced the notion of “zero point energy” (so, when Einstein later could not understand, or refused to understand, Quantum Electrodynamics, it was not because all the weirdest concepts therein were not of his own making…)

The debate on the Foundations of Quantum Physics is strong among experts, all over the map, and permeated with philosophy. Thus don’t listen to those who scoff about whether philosophy is not the master of science: it always has been, it is frantically so, and always will be. It is a question of method: the philosophical method uses anything to construct a logic. The scientific method can be used only when one knows roughly what one is talking about. Otherwise, as in Zeroth Century, or Twentieth Century physics, one can go on imaginary wild goose chases.

From my point of view, Dark Matter itself is a consequence of the True Quantum Physics. This means that experiments could be devised to test it. The belief that some scientific theory is likely incites beholders to make experiments to test it. Absent the belief, there would be no will, hence no financing. Testing for gravitational waves was long viewed as a wild goose chase. However, the Federal government of the USA invested more than one billion dollars in the experimental field of gravitational wave detection, half a century after an early pioneer (who was made fun of). It worked, in the end, splendidly: several Black Hole (-like) events were detected, and their nature was unexpected, bringing new fundamental questions.

Some will say that all this thinking, at the edges of physics and philosophy is irrelevant to their lives, now. Maybe they cannot understand the following. Society can ether put its resources in making the rich richer, more powerful and domineering. Or society can pursue higher pursuits, such as understanding more complex issues. If nothing else, the higher technology involved will bring new technology which nothing else will bring (the Internet was developed by CERN physicists).

Moreover, such results change the nature not just of what we believe reality to be, but also of the logic we have developed to analyze it. Even if interest in all the rest faded away, the newly found diamonds of more sophisticated, revolutionary logics would not fade away.

Patrice Ayme’


Gravitational Waves Directly Detected

February 11, 2016

How Were Gravitational Waves detected?

By two detectors in the USA, one in Washington State, the other in Louisiana (detecting in one place would have been enough; in two places at the same time, the finding is overwhelming certain; the National Science Foundation of the USA had spent $1.1 billion, over 40 years, on that research). The detectors were simplicity themselves in concept: just a light interferometer to measure the distance between mirrors: light is split, sent in two perpendicular directions, and then re-united with itself. If one of the branches vary slightly in length relative to the other as a gravitational waves passes, an interference will show up. However mirrors hanging from pendulum hanging from pendulums five times, the whole thing in an anti-vibration machine had to be realized in half a dozen places in a chain of reflections and interference.

What are these Gravitational Waves?

As far as existing gravitation theory has it, distortion in space (and, thus time: time and space are related by the speed of light, c).

A Field Carries Away A Wave Just As A Whip Does

A Field Carries Away A Wave Just As A Whip Does

What Was Detected:

Einstein’s Gravitation Theory says that gravitation “is” the deformation of space(time) it brings. It is this deformation which was directly detected: a part of space in one direction was made shorter than in another direction. That meant a huge gravitational wave had passed.

The formidable event that caused it was the crash and collapse of two black holes into each other, each around 30 solar masses (much more details are known).

Gravitational Waves Were Certain Theoretically, & Already Detected:

We already had evidence for the existence of gravitational waves, both theoretical and experimental. Einstein’s name was rolled out, naturally enough. Because Einstein contributed to the present Theory of Gravitation (I am not anti-Einstein, far from it, but he closely worked with a number of other people, including the towering mathematician David Hilbert, who published his own approach to gravity within weeks of Einstein).

Einstein tends to appear as the cherry on many a cake. Those who celebrate the photogenic cherry, and ignore the cake, will go hungry.


Actually, once one has hypothesized that gravitation is a field propagating at a finite speed, the apparition of waves is automatic.

The reasoning was made first by British and French Eighteenth Century physicists, in the framework of electromagnetic force; the mathematics is exactly the same with gravitation, as both fields vary with the inverse square of the distance. This is what happens in a radio antenna, with electrons going back and forth: the electric field that those electrons create is deformed in such a way that it moves other electron at a distance, back and forth.

The Gravitational Energy Loss Detection Method:

Thus, how do the waves show up? By shaking things at a distance. Using conservation of energy, it means that the field creating system, by moving just so, loses energy to its waves. An obvious case is two neutron stars (“pulsars”) rotating around each other: as they move back and forth, because of said rotation, they create gravitational waves which carry energy away from their system, As this happens, their system loses energy, the two stars should spiral into each other, thus rotate ever faster, and this should be observable, and computable exactly. This, indeed, was thoroughly observed, so we knew the waves were there.

Einstein’s Gravitation Theory is a sleight of hand:

It affects to identify space(time) deformations with gravitation. The idea actually originated with the awesome German mathematician Bernard Riemann, who invented manifold theory in part to point out that any force could be viewed as convergence, or divergence of geodesics (this is an idea that physics has been milking ever since).

This, though, does not answer Newton’s deeper query about the nature of gravitation (see below). It’s a bit as if a creature asked:’What is an arm?’ And one answered:’An arm is what pushes things, and we can detect the deformation the arm brought.’

What is the discovery good for?

Well, first, one has to make sure. Science is about making 100% sure. The present experiment improved some technology far out what anything else required (but then it does open some possibilities!) Just an importantly, now we will be able to check the details of the Gravitation Theory (the big picture was not in doubt; the details are). Ultimately it may be possible to communicate through gravitational waves, etc (although right now the deformation are only of the size of the fraction of a nucleus, and we could detect them!)

Who were the originators of that idea? First Newton himself pointed out that his own theory of gravitation was grotesque (I am paraphrasing). Newton:

“that one body may act upon another at a distance thro’ a Vacuum, without the Mediation of any thing else, by and through which their Action and Force may be conveyed from one to another, is to me so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it.”

There were actually two problems: that the action was instantaneous, and that it was at a distance without intermediaries. Newton paid attention to the second one, physics, in the last two centuries, solved the first (which was implicit in Newton’s observations).

As I mentioned in passing above, part of Newton’s worries were addressed by the invention of the concept of field. And then by the realization that fields carried energy away in waves. At that point, gravitational waves were automatic… Riemann’s introduction of manifolds, and how to conceptualize forces in them gave the manifestation of its nature to gravitation we presently have, a distortion of space metric (once again, time follows automatically).

It’s important to know who invented what, and contributed most. Because it unveils how ideas appear and evolve. Then, in turn, one can make theories of that, accelerating innovation (don’t forget there is a horse race between innovation and oblivion, on the scale of the entire biosphere!)

Curiously, this is all very useful; GPS with a precision of 30 centimeters has allowed to find out that baboon society is more democratic than ours, in fundamental ways. “General Relativistic” effects (the fact clocks run slow in a gravitational field) make crucial corrections to the GPS computations (otherwise GPS would be pretty useless). So this is not all academic. GPS will soon allow robotic agriculture… among other things.

We still don’t know what gravitation is. However, we can predict more things than Newton did… Even if he did not suspect they were there. This is just the beginning of what could be revealed, if our satanic impulses are kept in check.

Patrice Ayme’

EINSTEIN’S ERROR: The Multiverse

March 26, 2015

In 1905, his so-called Wonder Year, Albert Einstein presented a theory of the photoelectric effect. The new idea came in just two lines. However I boldly claim that Einstein’s theory of the photoelectric effect, although crucially correct, was also crucially wrong.

I claim that Einstein talked too much. His intuition was not careful enough, and too tied up with old fashion particles. Quantum Mechanics, one of the inventors Einstein was, questioned the very nature of elementary particles. Einstein imposed, at the outset, a solution, which, I claim, was erroneous.

What Einstein ought to have said is that electromagnetic energy was absorbed in packets of energy hf (h was Planck’s Constant, f the frequency of the light). That explained immediately the photoelectric effect. It was just enough to explain the photoelectric effect.

My Intuition Is More Informed Than Yours

My Intuition Is More Informed Than Yours



An electron receiving energy from light, receives a packet hf. If f is too small, the electron cannot be emitted: the electron needed some energy, say A, to escape the material. One needs hf > A.

Nor can an electron just pile up energy from light until the stored energy exceeded A. Why? Because energy is RECEIVED in such packets, and only these packets. It was hf, or nothing.

That explanation of the photoelectric effect was both necessary and SUFFICIENT. Such an explanation is exactly the symmetric statement of the one made by Planck in 1900.

(Planck did much more than that, he had to invent his constant, and it is astounding that he did not explain the photoelectric effect, as he had done 99% of the work).

Should Einstein have said what I said, he would have explained the photoelectric effect, instead of putting all of physics on an erroneous path.



However, Einstein instead said something prophetic he had no reason to proffer.

Here is Einstein statement from 1905, translated from German:

“Energy, during the propagation of a ray of light, is not continuously distributed over steadily increasing spaces, but it consists of a finite number of energy quanta LOCALIZED AT POINTS IN SPACE, MOVING WITHOUT DIVIDING and capable of being absorbed or generated only as entities.”

[I emphasized what I view as the grievously erroneous part.]

With Planck’s E = hf, this is what gave Einstein the Nobel Prize in 1921. So not only Einstein got it wrong, but so did the Nobel committee.

(Planck objected strenuously, because he never meant for the Electro-Magnetic field to be quantized outside the blackbody cavity. I agree about quantization upon reception, as that explanation works. My objection is that Einstein had no proof of what he advanced about LOCALIZATION.)

Einstein claimed that light is made of “quanta localized at points in space, moving without dividing”. Thus, Einstein invented elementary particles. Einstein had no reason for of this fabrication, whatsoever, and did not need it, as I said.



Fast forward thirty years. By then, thanks to the likes of Dirac (inventor of Quantum Electro Dynamics, who stumbled on Cartan’s Spinor Space and Antimatter) and Von Neumann (Functional Analysis maven), etc. the Quantum formalism had been sculpted like Mount Rushmore in the mountains of natural philosophy.

The formalism consisted in claiming that the elementary particles invented by Albert were vectors in a (Hilbert) space whose basis was made of the possible results of the experiment E.

The mathematics worked well.

However, IF Einstein’s initial invention was false, so was the picture of reality it conveyed.

And indeed, as we saw, Einstein had no reason to claim what he did: he violated Newton’s “Hypotheses Non Fingo” (“I do not FABRICATE hypotheses”… my translation).

Isaac Newton: …”I do not fabricate hypotheses. For whatever is not deduced from the phenomena must be called a hypothesis; and hypotheses, whether metaphysical or physical, or based on occult qualities, or mechanical, have no place in experimental philosophy. In this philosophy particular propositions are inferred from the phenomena, and afterwards rendered general by induction.”



Galileo, to expose his ideas more pedagogically, set-up a trialogue, between “Simplicius” and two others (one being Galileo himself).

I pursue my exposition of what those who believe in the Multiverse cannot dare to articulate, as it would expose their utter confusion, and more:

Simplicius: So you say that Einstein fabricated localized Quanta, out of his fertile imagination, and that axiom wrecked all of physics?

Patrice Ayme: Exactly. I would prefer to call it not fertile, but obsolete, imagination. After Einstein had fabricated his seemingly innocuous hypothesis, the localized elementary particle, the next step was to identify it with the wave function.

Simplicius: Do you not insist that the world is mostly made of Quantum Waves?

PA: Yes but “Wave Functions” are just fist order approximations of “Quantum Waves”. “Wave Functions” cannot be real, they are mathematical artefacts.

Simplicius: How come?

PA: Wave functions are made of end states, the so-called eigenvectors, the end products of experiments. That makes wave functions intrinsically teleological, made up of the future. You may as well identify human beings to their tombstones, that’s how they end up.

Simplicius: What is the connection with the Multiverse?

PA: Wave functions are intrinsically multiversal, they are made by adding different outcomes, as if they all happened. But only one can ever happen, in the end. However, when in flight, we are been told that (Einstein’s) localized particle is made of as many pieces of universes as there are eigenstates.

Simplicius: So you conclude that Einstein’s localized quantum hypothesis plus the basic Quantum Formalism implies that the simplest elementary particle is made of pieces of different universes that will happen in the future?

PA: Exactly. Einstein, in conjunction with the Hilbert formalism, invented the Multiverse. This is what Everett observed, and, at the time, it made the inventors of Quantum Mechanics (minus Planck and Einstein) so uncomfortable that Everett was booted out of theoretical physics, an even his adviser Wheeler turned against him.

Simplicius: But did not Einstein demonstrate with the EPR thought experiment that “elements of reality” could not be localized?

PA: Exactly. With a little help from Karl Popper, maybe. Entanglement has been experimentally shown to not be localizable with the metric used in General Relativity. So light quanta themselves not only are not points, something that was obvious all along, sorry Einstein, but also, the speed of light is an emerging metric for the Universe.

It has been a conspiracy all along.

Simplicius: Conspiracy?

PA: Yes, there is a famous mistake in Dirac’s Principles of Quantum Mechanics. He insists that a photon interfere only with itself. That is demonstrably false (radio interference and independent lasers playing double slit). Dirac had to say that to NOT make the Quantum Waves themselves the main actors.

Simplicius: Why would physicists conspire to push false physics?

PA: Because, if they admit that their physics is false, and have nothing better to propose, they are losing status. (Whereas I improve mine by showing why they are wrong.)

Another point is that the “Multiverse” is suitably mysterious and absurd to impress common people. It is obviously the greatest miracle imaginable, so those who have penetrated this secrecy are very great men.


We saw Einstein’s hypothesis of localization led to the Multiverse. As the Multiverse is unacceptable, so is the localization hypothesis.

But we already knew this in several ways (diffraction, 2-slit, and other non-local wave effects; plus EPR style experiments, let alone the QM formalism itself, which also predicts non-localization).

The intuition of the real sub-quantic theory depends, in part, on such facts.

Patrice Ayme’


February 14, 2015

Light slows down in water. That’s a known experimental fact. The usual explanation is that, when light advances through water, it collides with water molecules. So it zigs and zags through the water, and this zig-zagging action slows it down.

This makes no sense (sorry, noble predecessors!)

After showing why it makes no sense, I will present my solution, STRUCTURED LIGHT. The reasoning squarely contradicts Einstein on the photon, and its triumph helps to demonstrate how right it is.

Structured Light Slows Down In Empty Space. I Apply To H2O

Structured Light Slows Down In Empty Space. I Apply To H2O

If the zig-zag collision theory of the slowing down of light were true, light would lose energy during these collisions. (Light speed through water is only 2/3 c; the collision theory would mean that laser light through water would cover one third more distance, simply due to haphazard collisions; thus laser light would certainly losing coherence.)

Simple basic physics shows that light loses energy: if particle P hits particle W, and particle P’s momentum changes, W momentum also changes, and so does its energy. Energy is conserved (at least for times long enough), so as P gives energy to W, P loses energy. Here P is for Photon, of course, and W for Water. (Remember Quantum Physics does not contradict Classical Mechanics; instead, it gives it a SUBSTRUCTURE, in the finer domain that subtends the Classical domain.)

So the slow-down through collision theory predicts that light will lose energy when it goes through water.

However, it does not. Light comes out of water at the same exact color, thus energy, as it came in. Laser light keeps being laser light under water. It surely would not if every single photon of the beam had to collide with a water molecule. (Notice in the link how confused research presently is about optics and liquids; my proposed reasoning is at a scale thousands of times smaller.)

Proposing that light slows down from collision is thus wrong.

So, what’s my solution?

Absolute Wave Theory.

According to said theory, propagating photons are NOT particles (Va De Retro, Einsteinas!)

What are photons, when viewed as Absolute Waves?

Einstein proposed that photons (“Lichtquanten”) were points. He made it up. He had no proof, whatsoever, that this was true. It just sounded good. Worse: he did not need point-particle photons to explain the photoelectric effect. That error has poisoned the well of physics for 110 years. Thousands of physicists repeated what Einstein said. That Einstein was given the Nobel Prize for this exact idea, is no proof of its validity, as far as I am concerned. That makes me special.

But I have very good reasons to believe photons are not points. Because:

  1. I don’t know what points are. Not only I do not know what points are physically, I don’t even know what they are, mathematically. (By the way, I know Real Analysis and some Model Theory, so I am not as naïve as I may sound to the unwary.)
  2. Light diffracts and bends around corners. Isolated photons do this. How could they do it, if they were not spread about transversally?

Here is my conclusion: Photons are structured waves. This basically means that they have some width.

This is now experimentally supported. What was published in Science on January 22, 2015?

Spatially structured photons that travel in free space slower than the speed of light. (Daniel Giovannini1,*, & Al.)

“Abstract: That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wavevectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam’s transverse spatial structure. Using time-correlated photon pairs we show a reduction of the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of the order of 1 m. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves.”

So what do I propose?

That water structures photons propagating through it. Structuring is what slows light down. Instead of having just one mask, as in the Glasgow experiment, we have thousand within one wavelength of light. Thus, instead of being slowed down .0001%, it’s slowed down of the order of 10% or more.

As in the Glasgow experiment, photons are not “particles”, they are spread about (they have a “TRANSVERSE structure”).

When a photon enters water, should it NOT hit a water molecule, the photonic wave will get endowed with a complex topology of non-trivial genus (because the non-linear wave that constitutes the photon has to have avoided nuclei and orbiting electrons, and the only way it can do that is by evolving holes in the right places).

As a photon passes a water molecular group, it slows down a bit. The water molecules act like the mask the physicists applied to slow down the beam photons in their experiment. Those breaking episodes pile up, and integrate in a global slow-down.

Frequency, thus energy, is unaffected.

Some may object that the theory is obviously false: should not the slow-downs pile up, and thus, the thicker the water, the more photons will slow down?

No. In the slowing down of the Structured Photons in vacuum, the slowing down is necessitated by the collapse of the photon back into a linear wave. It’s a one time event. However, in water, when the photon has acquired a structure which is enough like a sieve, after going around enough water molecules, it needs time to restructure. So over that distance, it has slowed down. Then the process repeats.

Let me quote a bit more from the violation of light speed Glasgow University paper (from behind its pay wall):

“The speed of light in free space propagation is a fundamental quantity. It holds a pivotal role in the foundations of relativity and field theory, as well as in technological applications such as time-of-flight measurements. It has previously been experimentally established that single photons travel at the group velocity (20). We have now shown that transverse structuring of the photon results in a decrease in the group velocity along the axis of propagation. We emphasize that in our full-aperture experiments, no pre- or post-selection is applied to the spatially structured photons, and that the group velocities are always compared over the same propagation distance, much as if they were in a race. The effect can be derived from a simple geometric argument, which is also supported by a rigorous calculation of the harmonic average of the group velocity. Beyond light, the effect observed will have applications to any wave theory, including sound waves.”

The authors have declared that they could not see any application of the effect they discovered. In particular not in cosmology.

However, I just found one, in everyday physics.

Einstein said nobody understood Quantum Mechanics. Feynman added that all the mystery of the Quantum was in the Double Slit Experiment. Here I explain speed of light in a medium by piling up thousands of double slit experiments within a wavelength of light, and the slow-down they bring. (It’s not quite the Double Slit as it involves continual collapses along the propagation axis.)

The structured photon is the fundamental idea, the order one idea, of the Absolute Quantum Wave theory. The preceding, and the Glasgow experiment itself, establish it further (more is coming soon).

There is no experimental support for Einstein’s views on the spatial the nature of the photon as a particle, there is plenty of evidence against it (the latest being Structured Light).

By contrast there is increasing evidence for the Absolute Wave Theory. Einstein and company, bless their souls, pontificated about a lot of things they did not know anything about. That photons were point-particles is one of them. Time to move on.

Patrice Ayme’

Constructing TIME

June 3, 2014

How does one usually define time? Well, I will argue, it’s constructed by machines.

This has major consequences in physics, to be evoked some other time: Cosmic Inflation theory uses time, but has forgotten to define it. Thus a philosophical-historical review is in order.

The concept of time was developed experimentally over several millennia.  Time was important in agriculture: it allowed predicting when to do some specific activities essential to agriculture (planting, irrigation works, etc.).

Mayan Calendar: No Time, No Hydraulic Civilizations

Mayan Calendar: No Time, No Hydraulic Civilizations

The Mayas, and the Babylonians discovered that astronomy, observing stars and planets, allowed to predict the seasons. Thus, they defined time. The Mayan civilization depended upon highly technological seasonally constrained hydraulics, so time was of the essence. The Mayans thrived for millennia before an inordinate drought brought ecological catastrophe and the consequential mayhem (7C to 9C).

Shortly after the equal sign was invented (circa 1500 CE), time appeared in the equations of the Seventeenth Century physics. Time was fundamental to the equations of classical mechanics that described both how mechanical forces and gravitation-imparted trajectories: every dynamical phenomenon was a function of time, and its acceleration, the double derivative relative to time, was the force.

This classical time allowed to determine longitude in navigation. The more precise the time, the more precisely navigators knew where they were in the middle of the ocean. This (new) mechanical notion of time had grown from astronomical time, and was found, de facto, to be identical with astronomical time.

Mathematics and physics were deeply entangled. Time is truly an injection of the Real Line into the space(s) the equations are about. The concept of Real Line is implicitly central to calculus. Calculus was developed for physics.

However, in the Nineteenth Century, equations were derived for a force that was not found in Classical Mechanics, Electromagnetism.

(17 C) Gravitation is what one could call (until 1916!), a “point force”: a planet of mass M can be replaced by a point of mass M (that’s Gauss theorem; it caused lots of trouble to Newton).

Electromagnetism was more complex than gravitation.  Faraday drew lines of force lovingly (and was despised for it). Maxwell transformed them into “field” equations.

A “field”, just as a field of wheat. The Electromagnetic field could turn in circles on itself, or make lobes.

Sometimes, electric charges behave like “point forces” too. But magnetic charges could not be found: they were never like point (“monopoles” in modern jargon). However, electricity would turn into magnetism, and varying magnetism into electricity. Electromagnetism was exasperatingly complicated.

A journalist asked Faraday what use the fact that a varying magnetic field created electricity had. Faraday retorted: ”What’s the use of a new born baby?

All our industry now rests on this new born baby. (By the way, Michael Faraday was directly supported personally by the top plutocrat in Britain, the king.)

A field is non local. Whereas it looked as if gravitation did not need to be described by a field (an impression Einstein would change, but that’s besides the points made here), it was certainly not the case for electromagnetism.

Any force generates an acceleration, hence a dynamic, hence a trajectory. So classical mechanics generated a notion of time (it had turned out that time from a mechanical force, a spring, was the same as from gravitation).

Similarly for electromagnetism: it’s a force, so it defines a notion of time. However, even classically, electromagnetism was non-local. So the clocks defined by electromagnetism are non-local. I call them holonomic. (Adjusting classical time to electromagnetic time is called Special Relativity; it turned out that gravity needed to be made into a field, and that time needed to vary with speed so that physics was independent of speed.)

This notion of non-local time, it turned out, was another excellent torpedo against Cosmic Inflation, and the naivety that helped built it. More later…

Patrice Aymé