Posts Tagged ‘Cosmic Expansion’

Discrepancy In Universe’s Expansion & Quantum Interaction

January 17, 2018

In “New Dark Matter Physics Could Solve The Expanding Universe Controversy“, Ethan Siegel points out that:

“Multiple teams of scientists can’t agree on how fast the Universe expands. Dark matter may unlock why.
There’s an enormous controversy in astrophysics today over how quickly the Universe is expanding. One camp of scientists, the same camp that won the Nobel Prize for discovering dark energy, measured the expansion rate to be 73 km/s/Mpc, with an uncertainty of only 2.4%. But a second method, based on the leftover relics from the Big Bang, reveals an answer that’s incompatibly lower at 67 km/s/Mpc, with an uncertainty of only 1%. It’s possible that one of the teams has an unidentified error that’s causing this discrepancy, but independent checks have failed to show any cracks in either analysis. Instead, new physics might be the culprit. If so, we just might have our first real clue to how dark matter might be detected.

20 years ago it was peer-reviewed published, by a number of teams that we were in an ever faster expanding universe (right). The Physics Nobel was given for that to a Berkeley team and to an Australian team. There are now several methods to prove this accelerating expansion, and they (roughly) agree.

Notice the striking differences between different models in the past; only a Universe with dark energy matches our observations. Possible fates of the expanding Universe which used to be considered were, ironically enough, only the three on the left, which are now excluded.  Image credit: The Cosmic Perspective / Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider and Mark Voit.

Three main classes of possibilities for why the Universe appears to accelerate have been considered:

  1. Vacuum energy, like a cosmological constant, is energy inherent to space itself, and drives the Universe’s expansion. (This idea comes back to Einstein who introduced a “Cosmological Constant” in the basic gravitational equation… To make the universe static, a weird idea akin to crystal sphere of Ptolemaic astronomy; later Einstein realized that, had he not done that, he could have posed as real smart by predicting the expansion of the universe… So he called it, in a self-congratulating way, his “greatest mistake”… However, in the last 20 years, the “greatest mistake” has turned to be viewed as a master stroke…).
  2. Dynamical dark energy, driven by some kind of field that changes over time, could lead to differences in the Universe’s expansion rate depending on when/how you measure it. (Also called “quintessence”; not really different from 1), from my point of view!)
  3. General Relativity could be wrong, and a modification to gravity might explain what appears to us as an apparent acceleration. (However, the basic idea of the theory of gravitation is so simplest, it’s hard to see how it could be wrong, as long as one doesn’t introduce Quantum effects… Which is exactly what I do! In my own theory, said effect occur only at large cosmic distances, on the scale of large galaxies)

Ethan: “At the dawn of 2018, however, the controversy over the expanding Universe might threaten that picture. Our Universe, made up of 68% dark energy, 27% dark matter, and just 5% of all the “normal” stuff (including stars, planets, gas, dust, plasma, black holes, etc.), should be expanding at the same rate regardless of the method you use to measure it. At least, that would be the case if dark energy were truly a cosmological constant, and if dark matter were truly cold and collisionless, interacting only gravitationally. If everyone measured the same rate for the expanding Universe, there would be nothing to challenge this picture, known as standard (or “vanilla”) ΛCDM.

But everyone doesn’t measure the same rate.”

The standard, oldest, method of measuring the Hubble cosmic expansion rate is through a method known as the cosmic distance ladder. The simplest version only has three rungs. First, you measure the distances to nearby stars directly, through parallax, the variation of the angle of elevation during the year, as the Earth goes around its orbit. Most specifically you measure the distance to the long-period Cepheid stars like this. Cepheids are “standard candles”; they are stars whose luminosities vary, but their maximum power doesn’t, so we can know how far they are by looking how much they shine. Second, you then measure other properties of those same types of Cepheid stars in nearby galaxies, learning how far away those galaxies are. And lastly, in some of those galaxies, you’ll have a specific class of supernovae known as Type Ia supernovae. Those supernovae explode exactly when they accrete 1.4 solar mass, from another orbiting star (a theory of Indian Nobel Chandrasekhar, who taught at the University of Chicago). One can see these 1a supernovae all over the universe. Inside the Milky Way, as well as many of billions of light years away. With just these three steps, you can measure the expanding Universe, arriving at a result of 73.24 ± 1.74 km/s/Mpc.

The other methods makes all sorts of suppositions about the early universe. I view it as a miracle that it is as close as it is: 66.9 km/s/Megaparsec…

Ethan concludes that: “Currently, the fact that distance ladder measurements say the Universe expands 9% faster than the leftover relic method is one of the greatest puzzles in modern cosmology. Whether that’s because there’s a systematic error in one of the two methods used to measure the expansion rate or because there’s new physics afoot is still undetermined, but it’s vital to remain open-minded to both possibilities. As improvements are made to parallax data, as more Cepheids are found, and as we come to better understand the rungs of the distance ladder, it becomes harder and harder to justify blaming systematics. The resolution to this paradox may be new physics, after all. And if it is, it just might teach us something about the dark side of the Universe.”


My own starting point is a revision of Quantum Mechanics: I simply assume that Newton was right (that’s supposed to be a joke, but with wisdom attached). Newton described his own theory of gravitation to be absurd (the basic equation, F = M1 M2/dd. where d was the distance was from a French astronomer, Ishmael Boulliau, as Newton himself said. Actually this “Bullaldius” then spoiled his basic correct reasoning with a number of absurdities which Newton corrected).

Newton was actually insulting against his own theory. He said no one with the slightest understanding of philosophy would assume that gravitation was instantaneous.

Newton’s condemnation was resolved by Laplace, a century later. Laplace just introduced a finite speed for the propagation of the gravitational field. That implied gravitational waves, for the same reason as a whip makes waves.

We are in a similar situation now. Present Quantum Physics assumes that the Quantum Interaction (the one which carries Quantum Entanglement) is instantaneous. This is absurd for exactly the same reason Newton presented, and Laplace took seriously, for gravitation.

Supposing that the Quantum Interaction has a finite speed (it could be bigger than 10^23c, where c is the speed of light.

Supposing this implies (after a number of logical and plausible steps) both Dark Matter and Dark Energy. It is worth looking at. But let’s remember the telescope (which could have been invented in antiquity) was invented not to prove that the Moon was not a crystal ball, but simply to make money (by distinguishing first which sort of cargo was coming back from the Indies).

We see what we want to see, because that’s we have been taught to see, we search what we want to search, because that’s what we have been taught to search. Keeping an open mind is great, but a fully open mind is a most disturbing thing… 

Patrice Aymé

Cosmic Background Fanaticism

July 3, 2014

We have one experimental find: the Cosmic Radiation Background (CRB), a uniform light from all over the sky at 2.7 degree Kelvin. I will argue that, on the face of it, it has three possible causes. However only one is considered to be true, and is consequently explored to death. That is, as if the lives of physicists depended on it. In truth, it’s only their careers that depend upon it.

A theory nearly everybody believes in, is the “Big Bang”. After all, it’s in the Bible. The Bible is popular, thus, so is the “Big Bang”. As behooves something so big, it’s supposed to explain everything, for example why there is a Cosmic Radiation Background, why there is Helium, etc.

Pleiades Star Cluster: Close To Olbers Effect...

Pleiades Star Cluster: Close To Olbers Effect…

Skeptics will smirk: for centuries people searched for the Cosmic Radiation Background: then, it was called “Olbers Paradox”. The “Paradox” was that there should be a Cosmic Light Background (the light of distant stars)…

Olbers’ reasoning was simple: 1) suppose the universe is infinite. 2) thus looking anywhere around the sky, once gaze is bound to end on the surface of a star. 3) therefore the sky ought to be uniformly bright according to the brightness of the average star.

[Let’s forget modern subtleties such as Red Dwarf Stars and Brown Dwarves…]

However, pointed out Olbers there was no uniform brightness.

Now one such uniform cosmic light has been found, though, nobody seems to remember Olbers’ name. Olbers’ reasoning is inconvenient.

Indeed, ever since Maxwell, we have established that light is electromagnetic radiation. So the Olbers Paradox could very well show up, not as visible light, but as a weak radiation. Why? Well, suppose that distant parts of the Universe recede, as Hubble and his predecessors and colleagues observed: the light from distant stars would shift into the very deep infrared… As observed!

However, now that the Olbers Paradox has become the Olbers Effect, it’s used to explain something else completely different, and outright weird: the Big Boom. Instead of being the light of distant stars (or the like), as Olbers would have had it, the Cosmic Radiation Background (CRB) is viewed as the light from… an explosion.

We see the expansion, we see the stars, we see the galaxies, do we see the explosions?

And the question then appears: what happened to the initial Olbers Paradox? Why does nobody talk about it anymore? Could it not be that the Cosmic Radiation Background is even boosted the Olbers Effect with, say, tired light?

Why are these sort of natural, historically laden questions not addressed anymore?

The answer is simple: take Princeton University’s Physics Department. All professors there are string theorists. Problem: strings don’t exist. So these people are professors of inexistence. No wonder they can’t answer history.

It’s true that theoretical considerations can lead to phenomenological interrogations. But string theory had its chance. By occupying all the theoretical space, it prevents other theories to have their chance too.

Let’s change intellectual gears, and lift the debate into Meta.

What we have here is one experimental find: the Cosmic Radiation Background (CRB), a uniform light from all over the sky at 2.7 degree Kelvin.

We have three possible explanations, yet only one is pushed and pushed and pushed. That’s not the proper scientific method. To figure things out, we have to look everywhere, and make sure that logical branching points have been explored.

OK, governments do not give enough money to do that. They prefer hedge fund managers and Google clowns.

In the age when robots can replace most work, it’s time to reconsider this. Why? Why is it so important to get the universe right? Well, be it only because by doing so, we make our intelligence more subtle. In Bangladesh, the sea is now rising more than 16 millimeters per year, threatening one hundred million people. And nobody knows why.

Perfecting our ability to observe and make theories is our essence. And no better place there is to perfect it than the entire universe.

On a more aggressive meta level, to understand fanaticism, and the related intellectual fascism is urgently needed. In this respect the entire field of physics, as the self described most clever people in the world can be exposed to be complete fools.

Remember the TOE? The Theory Of Everything? Well, as we now know, physicists have theories on, at most 4% of the universe. And those are obviously incomplete. But that’s another story.

In the same vein, maybe they have only a 4% explanation of the Cosmic Radiation Background. Those who are honest enough, and clever enough, will admit that may well be true. No honesty in matters intellectual, no intelligence.

Patrice Aymé

Science Better Accelerate With The Universe

October 6, 2011


Abstract: The Accelerating Universe is one of the greatest discovery in physics for more than 70 years. It requires new physics to explain it, some sort of anti-gravitation at a very large scale. First established with supernovas, it seems to have been confirmed independently by a galactic survey. “Dark Acceleration” would be a better way to call it than “Dark Energy” (for two reasons: it expands the dark, and we don’t know for sure that it is caused by “energy” in the conventional sense).

This astounding discovery of that the universe is taking off, is typical of how revolutionary science is created. Checking supernovae was just supposed to be routine, a sort of boring science anti-scientists condemn. It was supposed to confirm what the Big Bangists all knew so well: the universe was expanding less fast than in the past, as the Big Bang theory had proven it.

Helas, it was not so! We are faced with something not just unpredicted, but thoroughly unpredictable by conventional physics.

[Some embryonic theories predicted the accelerating expansion, as those I call Dimensional Leakage (they have no official name I know of) and TOW.] 

Revolutionary science is all about finding out the unexpected. Revolutionary science keeps on being found, so we  have faith, we the faithful, the scientists, that much more revoltuionary science has to be found. The Accelerating Universe further bolsters our faith that the present physics with its Standard Model, a noble, useful, fruitful, but naïve and feeble attempt, missed one or more dimensions in the needed logic of what is going on.

How does one find the unexpected? Well, by using the most corrosive logic, propped by the most drastic imagination, and the most careful observations.

The supernova surveys belong to the later, extreme experimental care, and so does the OPERA experiment on neutrinos, and other efforts at CERN. Lesson? All of science has to be funded, if we want to find the unexpectable. Don’t just listen to the fashionable ones. Actually fashionable physics has rigorously not scored for several decades now. It’s not “Not even wrong!“, as physicist pointed out (Their millions of “predictions” are all over the place, so, whatever happened, they said so! Besides, none can be checked!)

Interestingly, the Nobel committee emphasized the point by offering the chemistry Nobel to an Israeli, “for the discovery of quasi-crystals“.

Intelligence is the only thing which can save Israel, and its neighbors, so it is a good indication that the 62 year old nation of seven million got ten Nobel prize winners. This is all the more striking that quasiperiodic patterns are a discovery made by the Islam led civilization, which long controlled Israel and Palestine.

Surviving in this universe we created for ourselves we require us to master the unexpected. So finance the most profitable activity of the government: fundamental research.

When the regime in the USA (the monneyed Congress) cancelled the Super Conducting Super Collider, it saved less than 10% of the bonuses it paid with public money to Wall Street in the first year after the 2008 collapse of deregulated finance.

And what did the Wall Street pirates spent their money on? $40,000 Champagne bottles? Whereas the ever better telescopes use ever better technology which no other human activity requires at this point. $40,000 Champagne has no future, but the new technology used in astronomy does. It could even save our lives (two small asteroids bracketed the Earth this summer, and one of them so close it was severely deflected; the silly ones will say that it does not matter, but if the 1908 bolide had exploded over Wall Street rather than over a desolated part of the Siberian forest, there would have been no more New York).

Let alone all the medical research, say on cancer, which was not financed, because it is $40,000 Champagne which got funded instead. The Medecine Nobel Prize honored progress in immunology. One of the recipients died of pancreatic cancer before the announcement. He had been using his discovery, dentritic immune cells, to activate his own defenses against his cancer. A few days later, the artistic technology integrator of Silicon Valley, Steve Jobs, died of the same cancer, after 7 years of a long battle. Some claimed that Jobs got a liver transplant in 2009 that the average job seeker would never have got. So money is never far from it all. There is clearly need for more biomedical research, for those who prefer their lives and those of their loved ones. But who are they, those who care about life? Who are they relative to those, the immense majority, who prefer, by far, seeing 20 something traders  buy a $40,000 Champagne bottle and then cause with it another $50,000 in damage to a restaurant? (That happened in Paris.)




I was a bit surprised that the physics Nobel was given for the faster-than-expected expansion of the universe. Not that the discovery was not important. Just the opposite extraordinary claims require extraordinary proofs. Clearly the committee decided to encourage research in the area, by making it more prestigious. Inasmuch as our leading politicians seem cowardly, unable to decide anything important, the Nobel committee has adopted the opposite strategy, bold, fully appropriate.

The Accelerating Universe is the most stunning discovery in experimental physics since, perhaps, the accidental confirmation of De Broglie’s matter waves by two American experimentalists. In the case of matter waves, theory (from De Broglie, in conceptual depths never touched before or since) preceded the discovery. Same thing with antimatter (Dirac predicted it).

But the Accelerating Universe was predicted by no prominent theory. It was an experimental find completely outside of standard theory, just as it was the case with neutrinos.

Neutrinos were also very important, because they meant that there was a new interaction at work, the weak force. Before the neutrinos and their weak force, Einstein knew of only two forces: gravitation and electromagnetism. So he said lots of things about space, and time, trying to tie both of the latter, with the preceding two. As if they could have eyes only for each other. Cute. Romantic. (An integrated 5 dimensional theory, Kaluza-Klein integrated both).

However, with the discovery of the weak force, it looked as if adding one, or more, dimensions was lurking in the distance. Einstein was unable to pursue his dream, and it would be taken again, long after his death, by adding dimensions frantically, using the mathematical theory of fiber bundles.

The basic idea of the Einstein gravitational field equation is:

[Curvature of spacetime = Energy (in) spacetime].

(The idea was spawned by Riemann, a generation before Einstein’s birth.) Both curvature and energy are locally defined, so this is an equation at every point, and it has to be integrated to give a geometry of the universe over a sizable bit.)

Just as it is, even in this grossest of approximations, there are a lot of problems with this would-be equation (the right hand side is not well defined, as Einstein himself remarked, and depends upon the left hand side, as I would perfidiously add).

A problem Einstein saw was that, as his equation was, the curvature would be unstable in time: it would either collapse the universe, or then the universe would have to expand. But Einstein came out at night he saw that the stars were not moving: Einstein believed that the universe was static. So Einstein added a little constant on the left hand side of his equation, the Cosmological Constant, k, to prevent the universe to move.

This was a singular example of lack of imagination, because proper motions were first demonstrated by Edmund Halley in 1718 for the three bright stars: Sirius, Aldebaran, and Arcturus. Halley compared his measurements of their positions to those made by Hipparchus of Rhodes (300 BCE). In 2000 years the motions built up to the point that they became apparent to naked eye observers.

One should have suspected galaxies also moved. Not just that, but Hubble, operating with the Hooker telescope at Mt Wilson, next to Los Angeles, then the largest in the world (until 1948, with its 2.5 meters, just 10 centimeters larger than the Hubble Space telescope), soon discovered that distant galaxies were going away from us wherever he looked, and the further they were, the faster they went. [Speed Galaxy = (Constant) (distance galaxy)].

Einstein coquettishly proclaimed his recourse to k, the cosmological constant, the “greatest blunder of his life“. Because otherwise, he pointed out, he would have been able to predict what Hubble found. (I rather think that the greatest blunder of his life was to abandon his family, but that’s just me.)

I am giving all these sordid details to show that scientific inventions are not always what they are cracked up to be, even from the best and brightest. It was a sort-of-a-prediction, because, in all intellectual honesty, Einstein did not know whether the cosmological constant was zero or not, one way or another.

Actually, if he had been really crafty, the way he liked to be crafty, he could have said:”It is possible, considering my cosmological constant can vary all over the place, that the universe will be found to accelerate more or less, like Hubble saw, or even shrink, on an even larger distance, here or there”. So Einstein made the biggest blunder in his life, twice, with his own cosmological constant, by his own weatherwane standards, depending how the cosmic wind was blowing through his brain.

Because an Accelerating Universe was found: type 1a Supernovas at large cosmological distance flee faster and faster from us.



Of course installing an Einstein’s Cosmological Constant in Einstein gravitational equation is purely descriptive.  Nobody has any certainty about its source. The Cosmological Constant depicts DARK ACCELERATION. I call expansion beyond the Hubble prediction, Dark Acceleration, because we don’t know what it is due to.

People use interchangeably “Dark Energy” and what I call Dark Expansion, but the concepts are different. Dark Expansion is a fact, but it is not necessarily due to “Dark Energy”.

So “Dark Energy” is an abuse of language. Actually there are at least two imaginable mechanisms where Dark Acceleration is not caused by Dark Energy.

The DARK ENERGY idea proposes that somehow energy is injected in space which allows it to expand faster. Imaginable explanations for Dark Energy could be:

VACUUM ENERGY, which has been brandished as the source of the Dark Expansion. In Quantum Field Theory, the vacuum is full of energy. Nobody knows how much. All we know is that there is some energy in the vacuum (we have some indirect theoretical-experimental proofs, and direct measurements such as the Casimir effect). Evocations of “Vacuum Energy” are generally not accompanied of suggestions for a mechanism to expand the universe with it.

What do we observe though? A faster expansion. It could be due to a weakening of gravity at large distances (interestingly, inside galaxies and galactic clusters, gathering of the mysterious Dark Matter makes gravity stronger).

A mechanism to weaken gravity has been proposed by suggesting that space has more than three dimensions, and that gravity, somehow, would be leaking in one or more of these dimensions. One could call it DIMENSIONAL LEAKAGE. Dimensional leakage has also been proposed to explain the possible supraluminal speed of the very high energy neutrinos coming out of CERN (high energy neutrinos would jump into an extra dimension which shortens their trajectory through the “bulk“).

A final explanation for accelerated expansion could be TOW (Totally Objective wave), the author’s pet theory. TOW rests on the idea that its (hypothetic) Quantum Interaction proceeds at absolute speed TAU (more than ten billion times the speed of light!) Even though, the Quantum Interaction is overwhelmed by large cosmological distances: when a graviton, coming from way too far, singularizes itself, it loses part of its energy. Thus, according to TOW, gravity should weaken at large distances (just as light does).

The fact that there is no ready explanation for the Dark Acceleration shows that the hubristic crowd sing-songing on the rooftops about the “end of physics” a while ago, did not have much imagination. (Feynman was told about TOW, and was very appreciative, by the way.) 



When Israeli scientist Dan Shechtman claimed to have stumbled upon a new type of crystalline structure that seemed to violate the then known of the laws of nature, his “peers” and some giants of chemistry (Pauling) mocked him, insulted him and exiled him from his research group (“Danny, go away!“). “I was thrown out of my research group. They said I brought shame on them with what I was saying, I never took it personally. I knew I was right and they were wrong.”

Indeed, he just received the 2011 Nobel Prize in chemistry.

The lesson? “A good scientist is a humble and listening scientist and not one that is sure 100 percent in what he read in the textbooks” Shechtman said. I would add that the greater the thoughts, the fewer the peers.

The shy, 70-year-old Shechtman said he never doubted his findings and considered himself merely the latest in a long line of scientists who advanced their fields by challenging the conventional wisdom and were shunned by the establishment because of it. And the greater the idea, the greater the shunning.

In 1982, “Metallic Phase with Long-Range Orientational Order and No Translational Symmetry” by Dan Shechtman et al. demonstrated “Order with No Translational Symmetry”, the key here. Translational symmetry is what Pauling wanted to see, because he learned it in his kindergarten, way back when. That, or no symmetry at all, namely a glass, as Shechtman had expected to find. But Shechtman had serendipitously discovered what are now called “quasicrystals” – atoms arranged in patterns that seemed forbidden by nature…

Although they were clearly authorized in Islamic art since the Middle Ages… which should have been enough of an hint: if even the Islamists allowed them, assuredly their existence could not be denied. True, at that point Islam was very open minded, and early in that “Golden Age”, most of the thinkers were actually not Muslims, but Jews, Zoroastrians, with probably a vast complement of atheist Neoplatonists. Theocratic fascism, as among the Franks, would grow later (and simultaneously with the Franks, as fascists, on both sides, realized that the Bible was an inspirational celebration of holocausts and other injustices that kept on being rewarded in high places, and thus provided business opportunities).

Quasiperiodicity was recorded from an Al-Mn alloy which has been rapidly cooled after melting (which probably means the quasi periodicity is higher energy than full periodicity).

The art in Isfahan (a fantastic city I highly recommend, by the way, not just artistically speaking, but for the presence of immensely old wisdom breathing through the stupendous beauty displayed in mosques and other buildings) showed that quasicrystals were logically permissible. They preceded the work of the British mathematician Penrose by nine centuries, and, definitively constitute the original discovery.

It seems pretty obvious to me that the mere possibility of these, as exhibited in the mosques, did most of the conceptual work. And how could not chemical bonds glue all the atoms all together, once we had showed the quasiperiodic pattern was possible? It’s not quasicrystals which were surprising, but how people could think they could not exist. 

The discovery “fundamentally altered how chemists conceive of solid matter,” the Royal Swedish Academy of Sciences said. It redefined the notion of crystal in textbooks. Previously, a crystal had “a regularly ordered, repeating three-dimensional pattern,” according to the International Union of Crystallography. The new definition, adopted in 1992, states that a crystal is any solid with a “discrete diffraction diagram — that is, something that produces patterns, whatever a pattern is, just as Shechtman saw.

Quasiperiodic tiling, Masjid-e-Jameh
Quasiperiodic tiling,
Masjid-e-Jameh, Isfahan

Since Shechtman’s discovery, more quasicrystals have been found. A Swedish company found them in most durable steel, used in products such as razor blades and thin needles made specifically for eye surgery, the academy said. Quasicrystals are studied for use in new materials converting heat to electricity.

They have also been discovered in nature, in a Siberian river. As it seems obvious that they will prevent the propagation of fractures, one may expect to see plenty of quasicrystals in a future near us, except of course, if the banksters devour our civilization first, like they tried last time and the time before that, with their dangerous marionettes.

Quasi periodic structures are all over nature. They depict the subquantum world. Indeed the waves produced by dropping four or more stones into a pond always form a quasicrystal (or more exactly a quasiperiodic pattern), because there is a mathematical theorem saying this. Schechtman was aware of the  theorem, and when he saw the 10 fold quasiperiodicity, he knew.

Matter waves continually interfere, creating quasi periodic existence waves all over.



We are living in a scientific civilization, whether we like it or not, whether we are superstitious or not. The French ministry of ecology (headed by an experienced politician, a young and charging polytechnicienne who is piling up elected offices) just forbid by decree (executive order) fracking all over France (the National Assembly had already voted in that direction). The reason? Existing techniques have not demonstrated that they were ecologically sound, in the fullness of time. In other words, it was a purely scientific decision.

In the USA, fracking is practiced massively: whether the technique will lead to corruption of the aquifers is of no import, because, as Suskind’s book “Confidence Men” demonstrates, corruption is of the essence, and, now that it owns the White House, it may as well own the dark underground.

The essentiality of serious science is funded by states, as there is no monetary profit in it (learn, Tea Party!). But the science we have is not enough: we will soon be using several times this planet sustainable productivity, so we need to become much more efficient. This can be achieved only by considerable scientific progress, in all domains, from plate tectonics, to material science, to the most esoteric biology, to quantum algorithms, to whatever.

I say “to whatever” because there is no telling where the scientifically and, or, socially important breakthrough will occur.

For example nobody would have guessed that surveying supernovas would smash the hubristic certainty of those prestigious scientists who recited their new religion, the Theory Of Everything, the claim that they, the glorious ones, had figured out the entire universe (just like the proverbial god, before he got to know man). Not by coincidence, the peak of their hubris was around 1998, just when the accelerating universe started to make its presence known.

We are in scientific civilization, thus those who are anti-science are actually anti civilization. This is true even in the fossil fuel industry.

Even that fossil pursuit, trying to keep the fire going, as Homo Erectus already did, a million years ago, is scientific. Ever more primitively scientific, but still scientific, and involving many scientific issues, some potentially disastrous. Hydrocarbon burning is a massive scientific bet that the recombining with oxygen in the air of much of the hydrocarbons buried over 400 million years, will have no serious adverse consequence(s).

The evolving scientific evidence is that the consequences are many, and potentially extremely cataclysmically adverse. But as too many people in the leading countries are trained for superstitious, or sport analogy reasoning rather than scientific reasoning, especially in the USA, nothing much is done: other countries cannot afford to become uncompetitive with the USA and its 10,000 Chinese factories.  

Those who are not pro-science, being anticivilizational, are actually pro-world war, and pro-holocaust.

Should science not jump ahead, very soon, the coming holocaust is easy to compute: soon, on present trends, we will be using more than two sustainable earths, with eight billion people gnawing the shrinking resources (we are 7 billion now). Thus, if we do not augment our science considerably, we will have to cut the world population by half. 

Let’s insist on that point: we are exhausting the existing resources. For example we are well post easy-to-extract peak oil. The only reason we are not past vulgar peak oil, is that we are using increasing energetically expensive (energy is the only currency that counts by itself) and technologically expensive means.

The Romans did the same in their mines, with ever more slaves pushing ever more their primitive digging technology, to its bitter end, devastating the ecology for millennia. And they persisted, until they could not anymore. Exhausted, the mines closed for nearly 2,000 years. The Romans had no plans for that event. Nor did they have plan B.

Rome had been most technologically inventive as a republic. That’s how it vanquished everybody.

Having captured a Carthaginian ship, they, those Roman peasants, reverse engineered it, and made invincible fleets of ships. However as Rome progressively degenerated in the fascist dictatorship known as the Roman empire, innovation was the first victim, as proven by the fact that the Germans and Hellenized Persians became increasingly hard to beat on the open battlefield… because they had superior weapons (in particular, composite bows the arrows of which penetrated Roman armor).

Plutocratic, fascist imperial Rome did not want to understand that it was running out of science, considering the problems it faced. Plutocracy want the people to owe them, and the last thing it wants is to owe the people, and especially ideas! The official line in Rome was just to whine that the “world was getting old“. Rome was running out of resources, among other problems, its ore mines exhausted. When the Muslim army invaded, Rome needed to melt the metallic roofs of Rome to make weapons.

The master problem was of course that Rome was running out of moral, and thus intellectual, supremacy. When one treats one’s engineers, and engineering, badly, one runs out of engineering badly. (Something one can observe nowadays in the USA.) 

A similar shock between the demands of society and insufficient science and technology happened, roughly at the same time, to the Mayas (who confronted a dreadful drought). The Mayan ecology, construction technology, hydrology, agriculture and forestry science, although all sophisticated, and established for centuries, if not millennia, all came all too short, considering the crisis. Plutocracy got all enraged, and fought against itself, the way sharks do when they run out of food, and Mayan civilization imploded.

Science is about what really is, and why. With (more or less great) certainty. Thus science creates models and theories of great explanatory power, which can be emulated in other domains (sometimes simply as metaphors). Science transforms confusion and, or, phenomenological wealth into an harmonious explanatory whole. In other words, it can be inspirational, a leader to democracy, sociology, economy, even literature, poetry, etc.

It would be a dark future without new, really revolutionary science. Quasicrystals and the accelerating universe tell us, with certainty, that much revolutionary science is still to be discovered. Science has to pursue its dark expansion in the unknown, emulating the universe which harbors it. No choice.


Patrice Ayme