Posts Tagged ‘Infinity’

DOING AWAY WITH INFINITY SOLVES MUCH MATH & PHYSICS

January 11, 2018

Particle physics: Fundamental physics is frustrating physicists: No GUTs, no glory, intones the Economist, January 11, 2018. Is this caused by a fundamental flaw in logic? That’s what I long suggested.

Says The Economist:“Persistence in the face of adversity is a virtue… physicists have been nothing if not persistent. Yet it is an uncomfortable fact that the relentless pursuit of ever bigger and better experiments in their field is driven as much by belief as by evidence. The core of this belief is that Nature’s rules should be mathematically elegant. So far, they have been, so it is not a belief without foundation. But the conviction that the truth must be mathematically elegant can easily lead to a false obverse: that what is mathematically elegant must be true. Hence the unwillingness to give up on GUTs and supersymmetry.”

Mathematical elegance? What is mathematics already? What maybe at fault is the logic brought to bear in present day theoretical physics. And I will say even more: all of today logic may be at fault. It’s not just physics which should tremble. The Economist gives a good description of the developing situation, arguably the greatest standstill in physics in four centuries:

“In the dark

GUTs are among several long-established theories that remain stubbornly unsupported by the big, costly experiments testing them. Supersymmetry, which posits that all known fundamental particles have a heavier supersymmetric partner, called a sparticle, is another creature of the seventies that remains in limbo. ADD, a relative newcomer (it is barely 20 years old), proposes the existence of extra dimensions beyond the familiar four: the three of space and the one of time. These other dimensions, if they exist, remain hidden from those searching for them.

Finally, theories that touch on the composition of dark matter (of which supersymmetry is one, but not the only one) have also suffered blows in the past few years. The existence of this mysterious stuff, which is thought to make up almost 85% of the matter in the universe, can be inferred from its gravitational effects on the motion of galaxies. Yet no experiment has glimpsed any of the menagerie of hypothetical particles physicists have speculated might compose it.

Despite the dearth of data, the answers that all these theories offer to some of the most vexing questions in physics are so elegant that they populate postgraduate textbooks. As Peter Woit of Columbia University observes, “Over time, these ideas became institutionalised. People stopped thinking of them as speculative.” That is understandable, for they appear to have great explanatory power.”

A lot of the theories found in theoretical physics “go to infinity”, and a lot of their properties depend upon infinity computations (for example “renormalization”). Also a lot of problems which appear and that, say, “supersymmetry” tries to “solve”, have to do with turning around infinite computations which go mad for all to see. For example, plethora of virtual particles make Quantum Field Theory miss reality by a factor of 10^120. Thus curiously, Quantum Field Theory is both the most precise, and most false theory ever devised. Confronted to all this, physicists have tried to do what has worked in the past, liked finding the keys below the same lighted lamp post, and counting the same angels on the same pinhead.

A radical way out presents itself. It is simple. And it is global, clearing out much of logic, mathematics and physics, of a dreadful madness which has seized those fields: INFINITY. Observe that infinity itself is not just a mathematical hypothesis, it is a mathematically impossible hypothesis: infinity is not an object. Infinity has been used as a device (for computations in mathematics). But what if that device is not an object, is not constructible?

Then lots of the problems theoretical physics try to solve, a lot of these “infinities“, simply disappear. 

Colliding Galaxies In the X Ray Spectrum (Spitzer Telescope, NASA). Very very very big is not infinity! We have no time for infinity!

The conventional way is to cancel particles with particles: “as a Higgs boson moves through space, it encounters “virtual” versions of Standard Model particles (like photons and electrons) that are constantly popping in and out of existence. According to the Standard Model, these interactions drive the mass of the Higgs up to improbable values. In supersymmetry, however, they are cancelled out by interactions with their sparticle equivalents.” Having a finite cut-off would do the same.

A related logic creates the difficulty with Dark Matter, in my opinion. Here is why. Usual Quantum Mechanics assumes the existence of infinity in the basic formalism of Quantum Mechanics. This brings the non-prediction of Dark Matter. Some physicists will scoff: infinity? In Quantum Mechanics? However, the Hilbert spaces which Quantum Mechanical formalism uses are often infinite in extent. Crucial to Quantum Mechanics formalism, but still extraneous to it, festers an ubiquitous instantaneous collapse (semantically partly erased as “decoherence” nowadays). “Instantaneous” is the inverse of “infinity” (in perverse infinity logic). If the later has got to go, so does the former. As it is Quantum Mechanics depends upon infinity. Removing the latter requires us to change the former.

Laplace did exactly this with gravity around 1800 CE. Laplace removed the infinity in gravitation, which had aggravated Isaac Newton, a century earlier. Laplace made gravity into a field theory, with gravitation propagating at finite speed, and thus predicted gravitational waves (relativized by Poincaré in 1905).

Thus, doing away with infinity makes GUTS’ logic faulty, and predicts Dark Matter, and even Dark Energy, in one blow.

If one new hypothesis puts in a new light, and explains, much of physics in one blow, it has got to be right.

Besides doing away with infinity would clean out a lot of hopelessly all-too-sophisticated mathematics, which shouldn’t even exist, IMHO. By the way, computers don’t use infinity (as I said, infinity can’t be defined, let alone constructed).

Sometimes one has to let go of the past, drastically. Theories of infinity should go the way of those crystal balls theories which were supposed to explain the universe: silly stuff, collective madness.

Patrice Aymé

Notes: What do I mean by infinity not constructible? There are two approaches to mathematics:1) counting on one’s digits, out of which comes all of arithmetics. If one counts on one’s digits, one runs of digits after a while, as any computer knows, and I have made into a global objection, by observing that, de facto, there is a largest number (contrarily to what fake, yet time-honored, 25 centuries old “proofs” pretend to demonstrate; basically the “proof” assumes what it pretends to demonstrate, by claiming that, once one has “N”, there is always “N + 1”).

2) Set theory. Set theory is about sets. An example of “set” could be the set of all atoms in the universe. That may, or may not, be “infinite”. In any case, it is not “constructible”, not even to be extended consideration, precisely because it is so considerable (conventional Special Relativity, let alone basic practicality prevent that; Axiomatic Set Theory a la Bertrand Russell has tried to turn around infinity with the notion of  a proper class…)

In both 1) and 2), infinite can’t be considered, precisely, because it doesn’t finish.

Some will scoff, that I am going back to Zeno’s paradox, being baffled by what baffled Zeno. But I know Zeno, he is a friend of mine. My own theory explains Zeno’s paradox. And, in any case, so does Cauchy’s theory of limits (which depends upon infinity only superficially; even infinitesimal theory, aka non-standard analysis, from Leibnitz + Model Theory survives my scathing refounding of all of logics, math, physics).  

By the way, this is all so true that mathematicians have developed still another notion, which makes, de facto, logic local, and spurn infinity, namely Category Theory. Category Theory is very practical, but also an implicit admission that mathematicians don’t need infinity to make mathematics. Category Theory has now become fashionable in some corners of theoretical physics.

3) The famous mathematician Brouwer threw out some of the famous mathematical results he had himself established, on grounds somewhat similar to those evoked above, when he promoted “Intuitionism”. The latter field was started by Émile Borel and Henri Lebesgue (of the Lebesgue integral), two important French analysts, viewed as  semi-intuitionists. They elaborated a constructive treatment of the continuum (the real line, R), leading to the definition of the Borel hierarchy. For Borel and Lebesgue considering the set of all sets of real numbers is meaningless, and therefore has to be replaced by a hierarchy of subsets that do have a clear description. My own position is much more radical, and can be described as ultra-finitism: it does away even with so-called “potential infinity” (this is how I get rid of many infinities in physics, which truly are artefacts from mathematical infinity).  I expect no sympathy: thousands of mathematicians live off infinity.

4) Let me help those who want to cling to infinity. I would propose two sort of mathematical problems: 1) those who can be solved when considered in Ultra Finite mathematics  (“UF”). 2) Those which stay hard, not yet solved, even in UF mathematics.

Not An Infinity Of Angels On Pinheads

July 1, 2016

Thomas Aquinas and other ludicrous pseudo-philosophers (in contradistinction with real philosophers such as Abelard) used to ponder questions about angels, such as whether they can interpenetrate (as bosons do).

Are today’s mathematicians just as ridiculous? The assumption of infinity has been “proven” by the simplest reasoning ever: if n is the largest number, clearly, (n+1) is larger. I have long disagreed with that hare-brained sort of certainty, and it’s not a matter of shooting the breeze. (My point of view has been spreading in recent years!) Just saying something exists, does not make it so (or then one would believe Hitler and Brexiters). If I say:”I am emperor of the galaxy known as the Milky Way!” that has a nice ring to it, but it does not make it so (too bad, that would be fun).

Given n symbols, each labelled by something, can one always find a new something to label (n+1) with? I say: no. Why? Because reality prevents it. Somebody (see below) objected that I confused “map” and “territory”. But I am a differential geometer, and the essential idea there, from the genius B. Riemann, is that maps allow to define “territory”:

Fundamental Idea Of Riemann: the Maps At the Bottom Are Differentiable

Fundamental Idea Of Riemann: the Maps At the Bottom Are Differentiable

The reason has to do with discoveries made between 1600 and 1923. Around 1600 Kepler tried to concretize that attraction of planets to the sun (with a 1/d law). Ishmael Boulliau (or Bullialdius) loved the eclipses (a top astronomer, a crater on the Moon is named after him). But Boulliau strongly disagreed with 1/d and gave a simple, but strong reasoning to explain it should be 1/dd, the famous inverse square law.

Newton later (supposedly) established the equivalence between the 1/dd law and Kepler’s three laws of orbital motion, thus demonstrating the former (there is some controversy as whether Newton fully demonstrated that he could assume planets were point-masses, what’s now known as Gauss’ law).

I insist upon the 1/dd law, because we have no better (roll over Einstein…), on a small-scale.

Laplace (and some British thinker) pointed out in the late 18C that this 1/dd law implied Black Holes.

In 1900, Jules Henri Poincaré demonstrated that energy had inertial mass. That’s the famous E = mcc.

So famous, it could only be attributed to a member of the superior Prussian race.

The third ingredient in the annihilation of infinity was De Broglie’s assertion that to every particle a wave should be associated. The simple fact that, in some sense a particle was a wave (or “wave-packet”), made the particle delocalized, thus attached to a neighborhood, not a point. At this point, points exited reality.

Moreover, the frequency of the wave is given by its momentum-energy, said De Broglie (and that was promptly demonstrated in various ways). That latter fact prevents to make a particle too much into a point. Because, to have short wave, it needs a high frequency, thus a high energy, and if that’s high enough, it becomes a Black Hole, and, even worse a Whole Hole (gravity falls out of sight, physics implodes).

To a variant of the preceding, in: Solution: ‘Is Infinity Real?’  Pradeep Mutalik says:

July 1, 2016 at 12:31 pm

@Patrice Ayme: It seems that you are making the exact same conflation of “the map” and “the territory” that I’ve recommended should be avoided. There is no such thing as the largest number in our conceptual model of numbers, but there is at any given point, a limit on the number of particles in the physical universe. If tomorrow we find that each fermion consists of a million vibrating strings, we can easily accommodate the new limit because of the flexible conceptual structure provided by the infinite assumption in our mathematics.

***

I know very well the difference between “maps” and territory: all of post-Riemann mathematics rests on it: abstract manifolds (the “territories”) are defined by “maps Fi” (such that, Fi composed with Fj is itself a differential map from an open set in Rx…xR to another, the number of Real lines R being the dimension… Instead of arrogantly pointing out that I have all the angles covered, I replied:

Dear Pradeep Mutalik:

Thanks for the answer. What limits the number of particles in a (small enough) neighborhood is density: if mass-energy density gets too high, according to (generally admitted) gravity theory, not even a graviton could come out (that’s even worse than having a Black Hole!)

According to Quantum Theory, to each particle is associated a wave, itself computed from, and expressing, the momentum-energy of said particle.

Each neighborhood could be of (barely more than) Planck radius. Tessellate the entire visible universe this way. If too each distinct wave one attaches an integer, it is clear that one will run out of waves, at some point, to label integers with. My view does not depend upon strings, super or not: I just incorporated the simplest model of strings.

Another mathematician just told me: ‘Ah, but the idea of infinity is like that of God’. Well, right. Precisely the point. Mathematics, ultimately, is abstract physics. We don’t need god in physics, as Laplace pointed out to Napoleon (“Sire, je n’ai pas besoin de cette hypothese”). (I know well that Plato and his elite, tyrant friendly friends and students replied to all of this, that they were not of this world, a view known as “Platonism”, generally embraced by mathematicians, especially if they are from plutocratic Harvard University… And I also know why this sort of self-serving, ludicrous opinion, similar to those of so-called “Saint” Thomas, a friend of the Inquisition, and various variants of Satanism, have been widely advocated for those who call for self-respect for their class of haughty persons…) 

The presence of God, aka infinity, in mathematics, is not innocuous. Many mathematical brain teasers become easier, or solvable if one assumes only a largest number (this is also how computers compute, nota bene). Assuming infinity, aka God, has diverted mathematical innovation away from the real world (say fluid flow, plasma physics, nonlinear PDEs, nonlinear waves, etc.) and into questions akin to assuming that an infinity of angels can hold on a pinhead. Well, sorry, but modern physics has an answer: only a finite number.

Patrice Ayme’

 

Axiom of Choice: Crazy Math

March 30, 2014

A way to improve thinking is to imagine more, and be more rigorous. What a better place to exert these skills than in mathematics and logic? Things are clearer there.

The crucial Axiom Of Choice (AC) in mathematics has crazy consequences. After describing what it is, and evoking some of its insufferable consequences, I will expose why it ought to be rejected, and why the lack of a similar rejection, at the time, in a somewhat similar situation, may have help in the decay of Greco-Roman antiquity.

This is part of my general, Non-Aristotelian campaign against infinity in mathematics and beyond. The nature of mathematics, long pondered, is touched upon. A 25 centuries old “proof” is mauled, and not just because it’s fun. There is deep philosophy behind. Call it the philosophy of sustainability, or of finite energy.

Intolerably Crazy Math From Axiom of Choice

Intolerably Crazy Math From Axiom of Choice

The Axiom of Choice makes you believe you can multiply not just wine, fish and bread, but space itself: AC corresponds, one can say, to a wasteful mentality.

The Axiom of Choice says that, given a collection C of subsets inside a set S, one can consider that a set exists, made of elements, each one of them is an element in exactly one of the subsets. That sounds innocuous enough, and obvious. And obvious it is, if one thinks of finite sets. However, if C is infinite, it gets boringly complicated.

Moreover, AC has a consequence: given a unit sphere, one can cut it in disjoint pieces, and reassemble those pieces to build two unit spheres. Banach and Tarski, both Polish mathematicians working in what’s now Western Ukraine, the object of Putin’s envy and greed, demonstrated this Banach-Tarski paradox. It’s viewed as an object of wonder in General Topology.

I prefer to view it as an object of horror. (The pieces are not Lebesgue measurable, that means not physical objects. Such non measurable objects had been found earlier by Vitali and Hausdorff)

Punch line? The Axiom Of Choice (AC) is central to all of modern mathematics. Position of conventional mathematicians? The fact that AC is so useful, all over mathematics, proves that AC can be fruitfully considered to be true.

My retort? Maybe what you view as fruitful mathematics is just resting on a false axiom, or, at least one against nature, and thus, is just plain false, or against nature. One may be better off, studying mathematics that is not against nature..

As I showed earlier, calculus survives the outlawing of infinity in mathematics. That pretty much means that useful mathematics survives.

You see a problem with mathematics, even the simplest arithmetic, is that, once one has admitted the infinity postulate, thanks to the Cantor Diagonal process, one can always find undecidable propositions (this is part of the Incompleteness Theorems of mathematical logic: Gödel, etc.).

That means a field such as Euclidean geometry is infinite, in the sense that it has an infinite number of non-provable theorems. Each can be decided both ways: false, or true. Each gives rise to two mathematics.

Yet, even modern mathematicians will admit that studying Euclidean geometry for an infinite amount of time is of little interest. Proof? They don’t do it.

Yet, what’s the difference with what they are doing?

Mathematics is neurology, and neurology can be anything, but infinite. Think about what it means. Yes, mathematics is even cephalopod neurology, with the octopus’ nine brains. Fractals, for example, are part of math, but far from the tradition of equating angles or algebraic expressions.

It’s a big universe out there. The number one consequence to draw from the history of science, is that scientists make tribes. Quite often those tribes go astray… for more than 1,000 years (see notes). Worse: my making science, and, or mathematics, uninteresting, they may lead to a weakening of public intelligence.

I would suggest that effect, making science, and mathematics priestly and narrow minded, contributed to the powerful anti-intellectual tsunami that struck the Roman empire.

Greek mathematicians had excluded all mathematics as unworthy of consideration, but for a strict subset of “Euclid’s Elements” (some of the present Euclid Elements were added later). The implementation of those discoveries were made by others (Indians, and to some extent, Iranians and Arabs).

It turned out that these more practical mathematics, excluded by Euclid, because they were viewed as non rigorous and primitive, led to deeper and more powerful insights.

The irony was that Euclid’s Elements, in the guise of rigor, were using an axiom that was not needed, in general, the parallel axiom. That axiom, by supposing too much, killed the imagination.

I suggest nothing less happening nowadays, with the Axiom of Choice: it’s one axiom too far.

Patrice Aymé

Technical notes:

Up to a recent time, if one was not a Supersymmetric (SUSY) physicist, it was impossible to find a job, except as a taxi cab driver. There was a practical axiom ruling physics: the world had got to be supersymmetric.

Now the whole SUSY business seems to be imploding as the CERN’s LHC came up empty, and it dawned on participants that there was no reason for an experimental confrontation in the imaginable future… I have studied SUSY, and I have a competitive theory, where there are two hints of experimental proofs imaginable (namely Dark Energy and Dark Matter).

I said the AC was one axiom too far, but actually I think infinity itself is an axiom too far. I exposed earlier what’s wrong with the 25 centuries old proof of infinity (it assumes one can use a symbol one cannot actually evoke, because there is no energy to do so!).

The geocentric astronomy ruled from Aristarchus of Samos (who proposed the heliocentric system, 3C BCE) until Buridan (who used inertia, that he had discovered to make the heliocentric system more reasonable; ~1320 CE; Copernic learned Buridan in Cracow, Poland). It could be viewed as an axiom.

Hidden axioms are found even in arithmetic, for example the Archimedean Axiom was used by all mathematicians implicitly, before Model Theory logicians detected it around 1950 (it says, given two integers, A and B, a third one can be found, D, such that: AD > B; if not fulfilled one gets non-standard integers).

FINITE CALCULUS

October 31, 2013

If we want to get real smart, we will have to let no reason unturned. Foundations of calculus have been debated for 23 centuries (from Archimedes to the 1960s’ Non Standard Analysis). I cut the Gordian knot in a way never seen before. Nietzsche claimed he “made philosophy with a hammer”, I prefer the sword. Watch me apply it to calculus.

I read in the recent (2013) MIT book “The Outer Limits Of Reason” published by a research mathematician that “all of calculus is based on the modern notions of infinity” (Yanofsky, p 66). That’s a widely held opinion among mathematicians.

Yet, this essay demonstrates that this opinion is silly.

Instead, calculus can be made, just as well, in finite mathematics.

This is not surprising: Fermat invented calculus around 1630 CE, while Cantor made a theory of infinity only 260 years later. That means calculus made sense without infinity. (Newton used this geometric calculus, which is reasonable… with any reasonable function; it’s rendered fully rigorous for all functions by what’s below… roll over Weierstrass… You all, people, were too smart by half!)

If one uses the notion of Greatest Number, all computations of calculus have to become finite (as there is only a finite number of numbers, hey!).

The switch to finitude changes much of mathematics, physics and philosophy. Yet, it has strictly no effect on computation with machines, which, de facto, already operate in a finite universe.

In the first part, generalities on calculus, for those who don’t know much; can be skipped by mathematicians. Second part: original contribution to calculus (using high school math!).

***

WHAT’S CALCULUS?

Calculus is a non trivial, but intuitive notion. It started in Antiquity by measuring fancy (but symmetric) volumes. This is what Archimedes was doing.

In the Middle Ages, it became more serious. Shortly after the roasting of Johanne’ d’Arc, southern French engineers invented field guns (this movable artillery, plus the annihilation of the long bow archers, is what turned the fortunes of the South against the London-Paris polity, and extended the so called “100 year war” by another 400 years). Computing trajectories became of the essence. Gunners could see that Buridan had been right, and Aristotle’s physics was wrong.

Calculus allowed to measure the trajectory of a canon ball from its initial speed and orientation (speed varies from speed varying air resistance, so it’s tricky). Another thing calculus could do was to measure the surface below a curve, and relate curve and surface. The point? Sometimes one is known, and not the other. Higher dimensional versions exist (then one relates with volumes).

Thanks to the philosopher and captain Descartes, inventor of algebraic geometry, all this could be put into algebraic expressions.

Example: the shape of a sphere is known (by its definition), calculus allows to compute its volume. Or one can compute where the maximum, or an inflection point of a curve is, etc.

Archimedes made the first computations for simple cases like the sphere, with slices. He sliced up the object he wanted, and approximated its shape by easy-to-compute slices, some bigger, some smaller than the object itself (now they are called Riemann sums, from the 19C mathematician, but they ought to be called after Archimedes, who truly invented them, 22 centuries earlier). As he let the thickness of the slices go to zero, Archimedes got the volume of the shape he wanted.

As the slices got thinner and thinner, there were more and more of them. From that came the idea that calculus NEEDED the infinite to work (and by a sort of infection, all of mathematics and logic was viewed as having to do with infinity). As I will show, that’s not true.

Calculus also allows to introduce differential equations, in which a process is computed from what drives its evolution.

Fermat demonstrated the fundamental theorem of calculus: the integral was the surface below a curve, differentiating that integral gives the curve back; otherwise said, differentiating and integrating are inverse operations of each other (up to constants).

Arrived then Newton and Leibnitz. Newton went on with the informal, intuitive Archimedes-Fermat approach, what one should call the GEOMETRIC CALCULUS. It’s clearly rigorous enough (the twisted examples one devised in the nineteenth century became an entire industry, and graduate students in math have to learn them. Fermat, Leibnitz and Newton, though, would have pretty much shrugged them off, by saying the spirit of calculus was violated by this hair splitting!)

Leibnitz tried to introduce “infinitesimals”. Bishop Berkeley was delighted to point out that these made no sense. It would take “Model Theory”, a discipline from mathematical logic, to make the “infinitesimals” logically consistent. However the top mathematician Alain Connes is spiteful of infinitesimals, stressing that nobody could point one out. However… I have the same objection for… irrational numbers. Point at pi for me, Alain… Well, you can’t. My point entirely, making your point irrelevant.

***

FINITUDE

Yes, Alain Connes, infinitesimals cannot be pointed at. Actually, there are no points in the universe: so says Quantum physics. The Quantum says: all dynamics is waves, and waves point only vaguely.

However, Alain, I have the same objection with most numbers used in present day mathematics. (Actually  the set of numbers I believe exist has measure zero relative to the set of so called “real” numbers, which are anything but real… from my point of view!).

As I have explained in GREATEST NUMBER, the finite amount of energy at our disposal within our spacetime horizon reduces the number of symbols we can use to a finite number. Once we have used the last symbol, there is nothing anymore we can say. At some point, the equation N + 1 cannot be written. Let’s symbolize by # the largest number. Then 1/# is the smallest number. (Actually (# – 1)/# is the fraction with the largest components.)

Thus, there are only so many symbols one can actually use in the usual computation of a derivative (as computers know well).  Archimedes could have used only so many slices. (The whole infinity thing started with Zeno and his turtle, and the ever thinner slices of Archimedes; the Quantum changes the whole thing.)

Let’s go concrete: computing the derivative of x -> xx. it’s obtained by taking what the mathematician Cauchy, circa 1820, called the “limit” of the ratio: ((x + h) (x + h) – xx)/h. Geometrically this is the slope of the line through the point (x, xx) and (x + h, (x + h) (x + h)) of the x -> xx curve. That’s (2x + h). Then Cauchy said: “Let h tend to zero, in the limit h is zero, so we find 2x.”  In my case, h can only take a number of values, increasingly smaller, but they stop. So ultimately, the slope is 2x + 1/#. (Not, as Cauchy had it, 2x.)

Of course, the computer making the computation itself occupies some spacetime energy, and thus can never get to 1/# (as it monopolizes some of the matter used for the symbols). In other words, as far as any machine is concerned, 1/# = 0! In other words, 1/# is… infinitesimal.

This generalizes to all of calculus. Thus calculus is left intact by finitude.

***

Patrice Ayme

***

Note: Cauchy, a prolific and major mathematician, but also an upright fanatic Catholic, who refused to take an oath to the government, for decades, condemning his career, would have found natural to believe in infinity… the latter being the very definition of god.