**What is time? Quantum Physics gives an answer, classical physics does not. Quantum Physics suggests that time is the set of all irreversible processes**. This is a world first, so it requires some explanations. I have been thinking, hard, of these things all my life. Sean Carroll, bless his soul, called my attention to the new development that mainstream physicists are starting to pay attention to my little kingdom(so I thank him).

***

SCIENCE IS WHAT WE DO:

Sean Carroll in “Quantum Fluctuations”:

*“Let’s conjure some science up in here. Science is good for the soul.”*

Patrice Ayme’:** Why is science good for the soul? Because the human soul is centered on finding truth. Science is truth, thus science is human. Nothing is more human than science. Science is what humans do. **Another thing humans do is art, and it tries to both duplicate, distort, and invent new nature, or interpretations, interpolations, and suggestions, of and from, nature:

*SC: …what are “quantum fluctuations,” anyway?* *Talk about quantum fluctuations can be vague. There are really 3 different types of fluctuations: Boltzmann, Vacuum, & Measurement. Boltzmann Fluctuations are basically classical: random motions of things lead to unlikely events, even in equilibrium.*

Patrice Ayme’: As we will see, or we have already seen in my own “Quantum Wave”, Quantum Fluctuations are just the Quantum Waves. Richard Feynman, at the end of his chapter on entropy in the Feynman Lectures on Physics, ponders how to get an arrow of time in a universe governed by time-symmetric underlying laws. Feynman:

*“So far as we know, all the fundamental laws of physics, such as Newton’s equations, are reversible. Then where does irreversibility come from? It comes from order going to disorder, but we do not understand this until we know the origin of the order. Why is it that the situations we find ourselves in every day are always out of equilibrium?”*

Patrice Ayme’: Is that really true? Are equations time-symmetric? Not really. First, equations don’t stand alone. Differential equations depend upon initial conditions. Obviously, even if the equations are time-symmetric, the initial conditions are not: the final state cannot be exchanged with the initial state.

Quantum Physics make this observation even more important. The generic Quantum set-up depends upon a geometric space S in which the equation(s) of motion will evolve. Take for example the 2-slit: the space one considers generally, S, is the space AFTER the 2-slit. The one before the 2-slit, C, (for coherence) is generally ignored. S is ordered by Quantum interference.

The full situation is made of: (C, S & Quantum interference). it’s not symmetric. The Quantum depends upon the space (it could be a so-called “phase space”) in which it deploys. That makes it time-assymmetric. An example: the Casimir Effect.

*****

QUANTUM PHYSICS IS ABOUT WAVES:

Sean Carroll:* “Nothing actually “fluctuates” in vacuum fluctuations! The system can be perfectly static. Just that quantum states are more spread out.”*

Indeed. Quantum states are, intrinsically, more spread out. They are NON-LOCAL. Why?

One has to go back to the basics. What is Quantum Physics about? Some, mostly the “*Copenhagen Interpretation*” followers, claim Quantum Physics is a subset of functional analysis. (The famous mathematician Von Neumann, one of the creators of Functional Analysis, was the founder of this system of thought; this scion of plutocrats, famously, yet **satanically**, claimed that De Broglie and Bohmian mechanics were impossible… Von Neumann had made a logical mistake; maybe that had to do with being involved with the satanic part of the American establishment, as, by then, that Hungarian had migrated to the USA and wanted to be called “Johnny”!).

The Quantum-as-functional analysis school became dominant. It had great successes in the past. It allows to view Quantum Physics as “*Non Commutative Geometry*”. However, contrarily to repute, it’s not the most fundamental view. (I have my own approach, which eschews Functional Analysis.)

But let’s backtrack. Where does Quantum-as-functional-analysis come from? A Quantum system is made of a (“configuration”) space S and an equation E (which is a Partial Differential Equation). Out of S and E is created a Hilbert Space with a basis, the “eigenstates”.

In practice, **the eigenstates are fundamental waves**. They can be clearly seen, with the mind’s eye, in the case of the Casimir Effect with two metallic plates: there is a maximal size for the electromagnetic wavelengths between the plates (as they have to zero out where they touch the metal).

The notion of wave is more general than the notion of eigenstate (Dirac pushed, successfully, the notion of wave so far that it created space, *Spinor Space*, and Quantum Field Theory has done more of the same, extending the general mood of De Broglie-Dirac to ever fancier Lagrangians, energy expression guiding the waves according to De Broglie scheme).

Historically, De Broglie suggested in 1923 (several publications to the French Academy of Science) that to each particle was associated a (relativistic) wave. De Broglie’s reasons were looked at by Einstein, who was impressed (few, aside from Einstein could understand what De Broglie said; actually De Broglie French jury thesis, which had two Nobel prizes, was so baffled by De Broglie’s thesis, that they sent it to Einstein, to ask him what he thought. Einstein replied with the greatest compliment he ever made to anyone: *“De Broglie has started to lift the great veil,”* etc…).

The De Broglie’s wave appears on page 111 of De Broglie’s 1924 thesis, which has 118 pages (and contains, among other things, the Schrödinger wave equation, and, of course, the uncertainty principle, something obvious: De Broglie said all particles were guided by waves whose wavelengths depended upon their (relativistic) energy. An uncertainty automatically appears when one tries to localize a particle (that is, a wave) with another particle (that is, another wave!)

***

CLASSICAL PHYSICS HAS NO ARROW OF TIME:

Consider an empty space S. If the space S is made available to (classical) Boltzmann particles, S is progressively invaded by (classical) particles occupying ever more states.

Classical physicist (Boltzmann, etc.) postulated the Second Law of Thermodynamics: something called entropy augmented during any process. Problem, rather drastic: all classical laws of physics are reversible! So, how can reversible physics generate a time-irreversible law? Classical physicist have found no answer. But I did, knight in shining armor, mounted on my powerful Quantum Monster:

***

QUANTUM PROCESSES CREATE IRREVERSIBLE GEOMETRIES:

When the same space S is made available as part of a Quantum System, the situation is strikingly different. As Sean Carroll points out, the situation is immediately static, it provides an order (as Bohm insisted it did). The observation is not new: the De Broglie waves provided an immediate explanation of the stability of electronic waves around atoms (thus supporting Bohr’s “First, or Semi-Classical, Quantum Theory”.

What’s a difference of a Quantum System with a classical system? The classical system evolves, from a given order, to one, more disordered. **The Quantum system does not evolve through increasing disorder. Instead, the space S, once accessed, becomes not so much an initial condition, but a global order.**

The afore-mentioned Hilbert Space with its eigenstates is that implicit, or implicate (Bohm) order. So the Quantum System is static in an important sense (from standing Quantum Waves, it sorts of vibrates through time).

Thus Quantum Systems have an intrinsic time-assymmetry (at least when dealing with cavities). When there are no cavities, entanglement causes assymmetry: once an interaction has happened, until observation, there is entanglement. Before interaction, there was no entanglement. Two classical billiards balls are not entangled either before or after they interact, so the interaction by collision is fully time reversible.

Entanglement is also something waves exhibit, once they have interacted and not before, which classical particles are deprived of.

Once more we see the** power of the Quantum mindset for explaining the world in a much more correct, much simpler, and thus much more powerful way. The Quantum even decides what time is.**

So far as we know, all the classical fundamental laws of physics, such as Newton’s equations, are reversible. Then were does irreversibility come from?* It does NOT come, as was previously suggested, from order going to disorder. *

Quite the opposite: **irreversibility comes from disorder (several waves)going to order (one wave, ordered by its surrounding geometry). **And we do understand the origin of the order:** it’s the implicit order of Quantum Waves deployed.**

You want to know the world? Let me introduce you to the Quantum, a concept of wealth, taste and intelligence.

Last and not least: if I am right, the Quantum brings the spontaneous apparition of order, the exact opposite picture which has constituted the manger in which the great cows of physics have found their sustenance. Hence the fact that life and many other complicated naturally occurring physical systems are observed to create order in the universe are not so baffling anymore. Yes, they violate the Second Law of Thermodynamics. However, fundamentally, that violated the spirit, the principle of the universe, the Quantum itself.

**Patrice Ayme’ **