Posts Tagged ‘Schrodinger Cat’

Entropy & Quantum: The Relativity of States

May 17, 2015

Entropy (usual symbol S) measures the number of specific ways in which a thermodynamic system may be arranged. It measures the number of states. It is understood as a measure of disorder.

Another part of physics which worries about states is Quantum Physics. A Quantum Process is associated to a Quantum Space which turns out to be a Hilbert Space (a complete complex vector space with a metric; basically the nices, simplest high dimensional complex vector space one can conceive of). The measurement is identified with an operator (say A) in said space, which has eigenspaces and eigenvalues (Av = av; where v is a vector called an eigenvector, and a, a complex number, the eigenvalue).

Forget Cats. In Which States Is The World Really In?

Forget Cats. In Which States Is The World Really In?

[Haroche, from the ENS lab in Paris which invented optical pumping, thus the laser, 62 years ago, and Wineland, from Boulder, got the Nobel in 2012.]

Both Entropy and the Quantum suffer of the same problem, namely: what is a state? Can state be absolutely defined?

As it is, things have been all too relative.

This is exemplified in Quantum Physics with the Schrodinger Cat Paradox. A cat is put in a box, with an infernal Quantum mechanism that is supposed to gas it (shortly after, the Nazis did for real… Interesting Freudian slip that German and Austrian physicists were involved with the idea of mixtures of dead and live cats).

The question is whether mixing live and dead cat waves is a full description of the system. It obviously stretches credulity. This was the argument of Schrodinger (initiated in exchanges with Einstein).

From the point of view of the cat, inside the box, the waves, states, and chosen Quantum spaces would be quite different

My wished-for-solution?

Apply an order on Hilbert spaces, according to fullness of description, and consider only ultrafilters (in the topological sense) as genuinely representative of the best approximation of reality. Hey, nobody said we should not think big… Anyway, that’s my answer to the Multiverse and its multiversists.

Now back to entropy.

As it exists, thermodynamics is about particles. Thus, it infeodated to the problem of states in Quantum Physics. Hence solving the Quantum Cat problem solves the problem of Entropy.

Or does it?

The deepest problem subjacent to Quantum Physics is whether some sort of thermodynamics could be, and thus should be, applied to the isolated particle (I believe it could, and should).

The Haroche and Wineland methods, above, are a step in the right direction, namely measuring what the real states, the ultimate element of reality of the world, are.

So is Entropy useless? Is it physics? Yes, it is physics, just like computer science is science. Both are emergent aspects of the world. Not as fundamental as a future sub-Quantum Physics, but all the fundamentalism, and no more, that we need, much of the time.

Patrice Ayme’

CONSCIOUSNESS IS QUANTUM

August 30, 2014

Consciousness is Quantum, because it cannot be anything else. Another, more vague argument, is that consciousness is ultimate, and so is Quantum Physics. It’s simple and natural to identify them, on the ground that there should be just one ultimate thing.

If consciousness were not Quantum, it would have to be classically explained. On the face of it, this is completely stupid: the world is Quantum, not classical. If consciousness were not Quantum, it would have to be “classical”, that is, not fundamental.

The Quantum is so incredibly fundamentally new, that it has changed even the notion of what it means to be enlightened:

Cat Seen From Entanglement, Not Light (!)

Cat Seen From Entanglement, Not Light (!)

[One of these Schrödinger cats was created by Entanglement, not Light!]

An argument for the Quantum nature of consciousness can also be derived along… classical lines familiar to old fashion philosophers.

Consider Classical Mechanics. Classical Mechanics is completely deterministic: given initial conditions, which can be determined with complete precision, a few differential evolution equation determine fully what will happen forever thereafter.

Thus, in Classical Mechanics, there cannot be any free will. Contrarily to observation. Also one then is left to ponder what good consciousness would have. Even pain would be useless, because the very conception of warning does not present any utility. Any process being ineluctable, human beings, and other animals are just witnesses to their own condition.

This means that the basic philosophy of consciousness and freedom contradicts Classical Mechanics.

Far from being philosophically satisfying, Classical mechanics is absurd. Descartes guessed this, as, inspired by Classical Mechanics (then being elaborated to the point it was clear that the equations were fully deterministic), he suggested animals were just machines.

To make human beings in something more, God was needed, it was confusedly felt. But then the omnipotence of God re-created the same problem as before: an omnipotent God replaces Classical Mechanics, and remakes the world into something humans cannot influence.

Quantum Physics has provided with a way out. It’s everywhere, unbeknownst. It is not just a physics of space and time, as so called “Relativity” is. When Poincare’ suggested the concept of Relativity, he meant one of space and time.

However, Quantum Physics entails a much more general relativity, the relativity of knowledge itself. Such is the Schrödinger Cat Paradox. Cats can be seen where one’s light has NOT reached. (The experiment was published a few weeks ago.)

What else do we know that can extent where no light of ours has passed? Consciousness, of course.

And the brain in all this?

The brain is a classical object, at first sight, a topology, a place with a notion of neighborhood. Different organs and networks in the brain accomplish different tasks, all at the same time. That’s what led some to the notion of subconscious. Indeed, most of these tasks are not consciously perceived: most of what the brain does is done in the background, and at best only very dimly perceived. For example heart management is hidden.

Yet, should one get a heart attack, one’s heart will become the focus of one’s consciousness (starting with a big pain). So what does consciousness do? It brings problems to the fore, and tasks where creativity, neurological creativity, is needed right away.

The brain, at first sight, is a classical object. But, at second sight, and actually, beyond sight, there is entanglement. And it allows to see.

It’s not as Pascal put it posthumously, that the heart can see where reason cannot, it’s that consciousness can see where light cannot. Remember the picture above.

How does consciousness do this? The brain, as I said has a local topology, yet consciousness rules over it all, that is, non-locally (we know this intuitively, or, as we also say, philosophically).

That perceived non-locality is something in common with Quantum Physics. The picture of the Schrödinger Cat made without light having gone from the cat to us was obtained by Quantum Entanglement, and not by a physical (“Hausdorff topology”) process.

Quantum Physics is not Hausdorff: points cannot be separated from each other. Not just that, but Quantum Physics is not local. Neither does consciousness feels like something, nor should it be, philosophically speaking as something that can be separated, and localized.

Some may scoff that the preceding may be all very interesting, a perspective on what may one day be better understood. But that it’s not practical.

Not so. The day has come, it’s here now.

Robots will seriously replace, displace and overcome humans when Quantum Physics becomes the core of Artificial Intelligence. Verily, one should talk about Artificial Consciousness (AC).

Indeed, the Quantum, once installed within machines in full, will show up as synthetic free will. The first Quantum computers are officially operational (see the D-Wave Two, an Adiabatic Quantum Computer; actually, you won’t see it, it’s sold for ten million dollars each).

Quantum processes, at best, are determined by non-local processes that we cannot inspect. Another point in common with consciousness.

So we are, most probably, Quantum computers. Classical Mechanics could explain us, Quantum Mechanics gives us freedom, and all what conscience is. This means that, as we create full Quantum computers, we will create, if my guess is correct, full consciousness of our own making. And we will be able to augment at will how conscious those machines will be.

Until they take over, of course.

The crown of creation will soon create souls. And soon engineer souls. Our apish ancestors started by stealing fire, we will end up giving birth to gods.

Patrice Ayme’