Posts Tagged ‘Universe’

Of God, Mice, And Men Who Believe They Created The Universe

February 8, 2018

When theists say that the universe exists because of God, they are saying that the universe exists, because of some agent they know: that make those theists vastly superior to us, simple miscreants, who do not happen to be acquainted with what, or who, created all and everything. Surely, those superior beings should lead us? So what sounds metaphysical, by asserting a “God” boils down to claiming a higher place in an all too human hierarchy.

Universe” means literally, “turned into one”, whereas “multiverse” would be: “turned into many”. So the set of all multiverses is the universe. (So the alleged existence of “multiverse” is akin to Bertrand Russell’s famous paradox of the set whose elements are not elements of itself; Russell’s paradox brought down mathematical logic as it had been known prior; present day physicists have been repeating that mistake, from lack of basic culture in the matter of mathematical logic!)

If we were to claim, and, or, even worse, have the feeling, that we know why the universe exists, we would be claiming, or have the impression, that we were God. This is not the business of physics, only the business of those who want us to be guided by absolutism.

Alexander the Great, seeing his blood flow, asked himself that question: am I a God? His Greek and Macedonian companions laughed him off. Later, on the advice of his mom, Olympia, Alexander ordered the old, most senior generalissimo Antipater, a companion of Alexander’s father, from Greece to Babylon. Antipater refused to obey. Antipater’s youngest son was Alexander’s page. Alexander found himself ceasing to be, before he could even organize his affairs.

We are both everything and nothing relative to the universe. The key to wisdom, is to keep a balance.

Man, playing God, touches man, playing Adam. All very touching, self-obsessing, self-gratifying, self-glorifying mental, self-stimulation, and self-mutilation.

The universe is, what it is. Science can describe it, not explain how it came to be. That is the proper mood that wisdom should embrace. Embracing the humility of reality, so we can unleash the power of truth.

Let theologians, dinosaurian conservatives, the Politically Correct and the Perfect Cretins, among others, try to learn this: We have to embrace the way things are, before we can hope to change what needs to be changed. And there is plenty of the latter. So stop claiming some human beings know why there is all there is. They don’t. They, and, or, their supporters just want everything you could possibly imagine, and then more.

Patrice Aymé

Note 1: the comment above was an answer to: “Why Is There Something, Rather Than Nothing?
Posted on February 8, 2018 by Sean Carroll
A good question!

Or is it?”

In it, Sean points out notions which I have exposed in the past, but are worth repeating, as many physicists, let alone philosophers and theologians, don’t get them. First of all Sean basically points out that the universe just is (as I said above, by definition of this neuronal activity!). And secondly Sean Carroll, a famous Cal Tech cosmologist, points out that all too many professional physicists don’t even understand that physics, as presently understood, doesn’t explain the universe! In other words, as I have said for decades, all too many physicists take themselves for God! (That is in the same meta category as Niels Bohr’s famous retort to Albert Einstein:”Stop telling God what to do!“)

“The right question to ask isn’t “Why did this happen?”, but “Could this have happened in accordance with the laws of physics?” As far as the universe and our current knowledge of the laws of physics is concerned, the answer is a resounding “Yes.” The demand for something more — a reason why the universe exists at all — is a relic piece of metaphysical baggage we would be better off to discard.

This perspective gets pushback from two different sides. On the one hand we have theists, who believe that they can answer why the universe exists, and the answer is God. As we all know, this raises the question of why God exists; but aha, say the theists, that’s different, because God necessarily exists, unlike the universe which could plausibly have not. The problem with that is that nothing exists necessarily, so the move is pretty obviously a cheat. I didn’t have a lot of room in the paper to discuss this in detail (in what after all was meant as a contribution to a volume on the philosophy of physics, not the philosophy of religion), but the basic idea is there. Whether or not you want to invoke God, you will be left with certain features of reality that have to be explained by “and that’s just the way it is.” (Theism could possibly offer a better account of the nature of reality than naturalism — that’s a different question — but it doesn’t let you wiggle out of positing some brute facts about what exists.)

The other side are those scientists who think that modern physics explains why the universe exists. It doesn’t! One purported answer — “because Nothing is unstable” — was never even supposed to explain why the universe exists; it was suggested by Frank Wilczek as a way of explaining why there is more matter than antimatter. But any such line of reasoning has to start by assuming a certain set of laws of physics in the first place. Why is there even a universe that obeys those laws? This, I argue, is not a question to which science is ever going to provide a snappy and convincing answer. The right response is “that’s just the way things are.” It’s up to us as a species to cultivate the intellectual maturity to accept that some questions don’t have the kinds of answers that are designed to make us feel satisfied.”

Note 2: Swiss citizen Tariq Ramadan, the world’s most famous  Islamist propagandist, holder of two chairs (no less!) at Oxford University, and now in a French prison, was going around the world grievously beating and raping women. Why? Because, precisely, he wanted everything, and that included beating up handicapped women. Even now, as he sits in prison, he enjoys his power: immensely powerful organizations behind him, the sort who made him an Oxford Don, are threatening many more women, who also want to file complaints against Ramadan, but are afraid to do so. The human species is naturally metaphysical. Ramadan wanted to create a universe where he and his ilk could hurt and terrorize women at will. This is not any different from telling us that Muhammad flew to Jerusalem, the capital of Israel, on a winged horse: it is outrageous, but it creates a universe, and its cause (and in this case Islamists are the cause of said universe!)


Points Against Multiverses

December 31, 2015

Physics, the study of nature, is grounded not just in precise facts, but also a loose form of logic called mathematics, and in even more general reasonings we know as “philosophy”. For example, the rise of Quantum Field Theory required massive Effective Ontology: define things by their effects. The reigning philosophy of physics became “shut-up and calculate”. But it’s not that simple. Even the simplest Quantum Mechanics, although computable, is rife with mind numbing mysteries (about the nature of matter, time and non-locality).

Recently the (increasing) wild wackiness of the Foundations of Physics, combined with the fact that physics, as it presently officially exists, cannot under-stand Dark Energy and Dark Matter, most of the mass-energy out there, has led some Europeans to organize conferences where physicists meet with reputable  philosophers.

Einstein Was Classical, The World Is Not. It's Weirder Than We Have Imagined. So Far.

Einstein Was Classical, The World Is Not. It’s Weirder Than We Have Imagined. So Far.

[Bell, CERN theory director, discovered a now famous inequality expressing locality, which Quantum physics violate. Unfortunately he died of a heart attack thereafter.]

Something funny happened in these conferences: many physicists came out of them, persuaded, more than ever, or so they claimed, that they were on the right track. Like little rodents scampering out in the daylight,  now sure that there was nothing like a big philosophical eagle to swoop down on them. They made many of these little reasonings in the back of their minds official (thus offering now juicy targets).

Coel Hellier below thus wrote clearly what has been in the back of the minds of the Multiverse Partisans. I show “his” argument in full below. Coel’s (rehashing of what has become the conventional Multiverse) argument is neat, cogent, powerful.

However I claim that it is not as plausible, not as likely, as the alternative, which I will present. Coel’s argument rests on a view of cosmology which I claim is neither mathematically necessary, nor physically tenable (in light of the physics we know).

To understand what I say, it’s better to read Coel first. Especially as I believe famous partisans of the Multiverse have been thinking along the same lines (maybe not as clearly). However, to make it fast, those interested by my demolition of it can jump directly to my counter, at the end: NO POINTS, And Thus No Multiverse.


Multiverses Everywhere: Coel Hellier’s Argument:

Coel Hellier, a professional astrophysicist of repute, wrote :  “How many Big Bangs? A philosophical argument for a multiverse”:

“Prompted by reading about the recent Munich conference on the philosophy of science, I am reminded that many people regard the idea of a multiverse as so wild and wacky that talking about it brings science into disrepute.”

Well, being guided by non-thinking physicists will do that. As fundamental physicist Mermin put it, decades ago:

The Philosophy "Shut Up And Calculate" Is A Neat Example Of Intellectual Fascism. It Is Increasingly Undermined By The Effort Toward Quantum Computing, Where Non-Locality Reigns

The Philosophy “Shut Up And Calculate” Is A Neat Example Of Intellectual Fascism. It Is Increasingly Undermined By The Effort Toward Quantum Computing, Where Non-Locality Reigns.

Coel, claiming to have invented something which has been around for quite a while, probably decades: My argument here is the reverse: that the idea of multiple Big Bangs, and thus of a multiverse, is actually more mundane and prosaic than the suggestion that there has only ever been one Big Bang. I’m calling this a “philosophical” argument since I’m going to argue on very general grounds rather than get into the details of particular cosmological models.

First, let me clarify that several different ideas can be called a “multiverse”, and here I am concerned with only one. That “cosmological multiverse” is the idea that our Big Bang was not unique, but rather is one of many, and that the different “universes” created by each Big Bang are simply separated by vast amounts of space.

Should we regard our Big Bang as a normal, physical event, being the result of physical processes, or was it a one-off event unlike anything else, perhaps the origin of all things? It is tempting to regard it as the latter, but there is no evidence for that idea. The Big Bang might be the furthest back thing we have evidence of, but there will always be a furthest-back thing we have evidence of. That doesn’t mean its occurrence was anything other than a normal physical process.

If you want to regard it as a one-off special event, unlike any other physical event, then ok. But that seems to me a rather outlandish idea. When physics encounters a phenomenon, the normal reaction is to try to understand it in terms of physical processes.”

Then Coel exposes some of the basic conclusions of the Standard Big Bang model:

So what does the evidence say? We know that our “observable” universe is a region of roughly 13.8 billion light years in radius, that being the distance light can have traveled since our Big Bang. (Actually, that’s how we see it, but it is now bigger than that, at about 90 billion light years across, since the distant parts have moved away since they emitted the light we now see.) We also know that over that time our observable universe has been steadily expanding.

Then astrophysicist Coel start to consider necessary something about the geometry of the universe which is not so, in my opinion. Coel:

“At about 1 second after the Big Bang, what is now our observable universe was only a few light years across, and so would have fitted into (what is now) the space between us and the nearest star beyond our Sun. Before that it would have been yet smaller.”

What’s wrong? Coel assumes implicitly that the universe started from a POINT. But that does not have to be the case. Suppose the universe started as an elastic table. As we go back in time, the table shrinks, distances diminish. Coel:

“We can have good confidence in our models back to the first seconds and minutes, since the physics at that time led to consequences that are directly observable in the universe today, such as the abundance of helium-4 relative to hydrogen, and of trace elements such as helium-3, deuterium, and lithium-7.[1] Before that time, though, our knowledge gets increasingly uncertain and speculative the further back we push.”

These arguments about how elements were generated, have a long history. They could actually be generated in stars (I guess, following Hoyle and company). Star physics is not that well-known that we can be sure they can’t (stars as massive as 600 Suns seem to have been discovered; usual astrophysics says they are impossible; such stars would be hotter than the hottest stars known for sure).

Big Bangists insist that there would have been no time to generate these elements in stars, because the universe is 13.8 billion years old. But that 13.8 billion is from their Big Bang model. So their argument is circular: it explodes if the universe is, actually 100 billion years old.

But back to Coel’s Multiverses All Over. At that point, Coel makes a serious mistake, the one he was drifting towards above:

“One could, if one likes, try to extrapolate backwards to a “time = zero” event at which all scales go to zero and everything is thus in the same place. But trying to consider that is not very sensible since we have no evidence that such an event occurred (from any finite time or length scale, extrapolating back to exactly zero is an infinite extrapolation in logarithmic space, and making an infinite extrapolation guided by zero data is not sensible). Further, we have no physics that would be remotely workable or reliable if applied to such a scenario.[2]

…”all scales go to zero and everything is thus in the same place.” is not true, in the sense that it does not have to be. Never mind, Coel excludes it, although he claims “extrapolating back in time” leads there. It does not.

Instead, Coel invites us to Voodoo (Quantum) Physics:

“So what is it sensible to consider? Well, as the length scale decreases, quantum mechanics becomes increasingly important. And quantum mechanics is all about quantum fluctuations which occur with given probabilities. In particular, we can predict that at about the Planck scale of 10−35 metres, quantum-gravity effects would have dominated.[3] We don’t yet have a working theory of quantum gravity, but our best guess would be that our Big Bang originated as a quantum-gravity fluctuation at about that Planck-length scale.”

Well, this is conventional pata-physics. Maybe it’s true, maybe not. I have an excellent reason why it should not (details another time). At this point, Coel is firmly in the conventional Multiverse argument (come to think of it, he did not invent it). The universe originated in a Quantum fluctuation at a point, thus:

“So, we can either regard our Big Bang as an un-natural and un-physical one-off event that perhaps originated absolutely everything (un-natural and un-physical because it would not have been a natural and physical process arising from a pre-existing state), or we can suppose that our Big Bang started as something like a quantum-gravity fluctuation in pre-existing stuff. Any physicist is surely going to explore the latter option (and only be forced to the former if there is no way of making the latter work).

At times in our human past we regarded our Solar System as unique, with our Earth, Sun and Moon being unique objects, perhaps uniquely created. But the scientific approach was to look for a physical process that creates stars and planets. And, given a physical process that creates stars, it creates not just one star, but oodles of them strewn across the galaxy. Similarly, given a physical process that creates Earth-like planets, we get not just one planet, but planets around nearly every star.”

Coel then gets into the famous all-is-relative mood, rendered famous by “French Theory”:

“It was quite wrong to regard the Sun and Earth as unique; they are simply mundane examples of common physical objects created by normal physical processes that occur all over the galaxy and indeed the universe.

But humans have a bias to a highly anthropocentric view, and so we tend to regard ourselves and what we see around us as special, and generally we need to be dragged kicking and screaming to the realisation that we’re normal and natural products of a universe that is much the same everywhere — and thus is strewn with stars like our Sun, with most of them being orbited by planets much like ours.

Similarly, when astronomers first realised that we are in a galaxy, they anthropocentrically assumed that there was only one galaxy. Again, it took a beating over the head with evidence to convince us that our galaxy is just one of many.”

Well, it’s not because things we thought were special turned out not to be that nothing is special. The jury is still out about how special Earth, or, for that matter, the Solar System, are. I have argued Earth is what it is, because of the Moon and the powerful nuclear fission reactor inside Earth. The special twist being that radioactive elements tend to gather close to the star, and not in the habitable zone. So Earth maybe, after all special.

At this point, Coel is on a roll: multiverses all over. Says he:

“ So, if we have a physical process that produces a Big Bang then likely we don’t get just one Big Bang, we get oodles of them. No physical process that we’re aware of happens once and only once, and any restriction to one occurrence only would be weird and unnatural. In the same way, any physical process that creates sand grains tends to create lots of them, not just one; and any physical process that creates snowflakes tends to create lots of them, not just one.

So, we have three choices: (1) regard the Big Bang as an unnatural, unphysical and unexplained event that had no cause or precursor; (2) regard the Big Bang as a natural and physical process, but add the rider that it happened only once, with absolutely no good reason for adding that rider other than human parochial insularity; or (3) regard the Big Bang as a natural and physical event, and conclude that, most likely, such events have occurred oodles of times.

Thus Big Bangs would be strewn across space just as galaxies, stars and planets are — the only difference being that the separation between Big Bangs is much greater, such that we can see only one of them within our observable horizon.

Well, I don’t know about you, but it seems to me that those opting for (3) are the ones being sensible and scientifically minded, and those going for (1) or (2) are not, and need to re-tune their intuition to make it less parochial.”

To make sure you get it, professor Coel repeats the argument in more detail, and I will quote him there, because as I say, the Multiverse partisans have exactly that argument in the back of their mind:

“So, let’s assume we have a Big Bang originating as a quantum-gravity fluctuation in a pre-existing “stuff”. That gives it a specific length scale and time scale, and presumably it would have, as all quantum fluctuations do, a particular probability of occurring. Lacking a theory of quantum gravity we can’t calculate that probability, but we can presume (on the evidence of our own Big Bang) that it is not zero.

Thus the number of Big Bangs would simply be a product of that probability times the number of opportunities to occur. The likelihood is that the pre-existing “stuff” was large compared to the quantum-gravity fluctuation, and thus, if there was one fluctuation, then there would have been multiple fluctuations across that space. Hence it would likely lead to multiple Big Bangs.

The only way that would not be the case is if the size of the pre-existing “stuff” had been small enough (in both space and time) that only one quantum fluctuation could have ever occurred. Boy, talk about fine tuning! There really is no good reason to suppose that.

Any such quantum fluctuation would start as a localised event at the Planck scale, and thus have a finite — and quite small — spatial extent. Its influence on other regions would spread outwards, but that rate of spreading would be limited by the finite speed of light. Given a finite amount of time, any product of such a fluctuation must then be finite in spatial extent.

Thus our expectation would be of a pre-existing space, in which there have occurred multiple Big Bangs, separated in space and time, and with each of these leading to a spatially finite (though perhaps very large) universe.

The pre-existing space might be supposed to be infinite (since we have no evidence or reason for there being any “edge” to it), but my argument depends only on it being significantly larger than the scale of the original quantum fluctuation.

One could, of course, counter that since the initial quantum fluctuation was a quantum-gravity event, and thus involved both space and time, then space and time themselves might have originated in that fluctuation, which might then be self-contained, and not originate out of any pre-existing “stuff”.[5] Then there might not have been any pre-existing “stuff” to argue about. But if quantum-gravity fluctuations are a process that can do that, then why would it happen only once? The natural supposition would be, again, that if that can happen once, then — given the probabilistic nature of physics — it would happen many times producing multiple different universes (though these might be self-contained and entirely causally disconnected from each other).”

Then, lest you don’t feel Multiversal enough, professor Coel rolls out the famous argument which brings the Multiverse out of Cosmic Inflation. Indeed, the universe-out of nothing Quantum fluctuation is basically the same as that of Cosmic Inflation. It’s the same general mindset: I fluctuate, therefore I am (that’s close to Paris motto, Fluctuat Nec Mergitur…). Coel:

In order to explain various aspects of our observed universe, current cosmological models suggest that the initial quantum fluctuation led — early in the first second of its existence — to an inflationary episode. As a result the “bubble” of space that arose from the original quantum-fluctuation would have grown hugely, by a factor of perhaps 1030. Indeed, one can envisage some quantum-gravity fluctuations leading to inflationary episodes, but others not doing so.

The inflationary scenario also more or less requires a multiverse, and for a similar reason to that given above. One needs the region that will become our universe to drop out of the inflationary state into the “normal” state, doing so again by a quantum fluctuation. Such a quantum fluctuation will again be localised, and so can only have a spatially finite influence in a finite time.

Yet, the inflationary-state bubble continues to expand so rapidly, much more rapidly than the pocket of normal-state stuff within it, that its extent does not decrease, but only increases further. Therefore whatever process caused our universe to drop out of the inflationary state will cause other regions of that bubble to do the same, leading to multiple different “pocket universes” within the inflationary-state bubble.

Cosmologists are finding it difficult to construct any model that successfully transitions from the inflationary state to the normal state, that does not automatically produce multiple pocket universes.[6] Again, this follows from basic principles: the probabilistic nature of quantum mechanics, the spatial localisation of quantum fluctuations, and the finite speed at which influence can travel from one region to another.”

The driver of the entire Multiverse thinking is alleged Quantum Fluctuations in a realm we know f anything. Those who are obsessed by fluctuations may have the wrong obsession. And professor Coel to conclude with more fluctuations:

“The dropping out of the inflationary state is what produces all of the energy and matter that we now have in our universe, and so effectively that dropping-out event is what we “see” as our Big Bang. This process therefore produces what is effectively a multiverse of Big Bangs strewn across that inflationary bubble. Thus we have a multiverse of multiverses! Each of the (very large number of?) quantum-gravity fluctuations (that undergo an inflationary state) then itself produces a whole multiverse of pocket universes.

The point I am trying to emphasize is that any process that is at all along the lines of current known physics involves the probabilistic nature of quantum mechanics, and that means that more or less any conceivable process for creating one Big Bang is going to produce not just a single event, but almost inevitably a vast number of such events. You’d really have to try hard to fine-tune and rig the model to get only one Big Bang.

As with any other physical process, producing multiple Big Bangs is far more natural and in-line with known physics than trying to find a model that produces only one. Trying to find such a model — while totally lacking any good reason to do so — would be akin to looking for a process that could create one snowflake or one sand grain or one star or galaxy, but not more than one.”


Did the universe expand from one point? Not necessarily. It could have been from a line, a plane, a volume, even something with a crazy topology. The Big Bang is the time zero limit of the FLRW metric. Then the spacing between every point in the universe becomes zero and the density goes to infinity.

Did the Universe expand from Quantum Gravity? Beats me, I don’t have a theory of Quantum Gravity.

What I know is that, expanding from what’s known of gravity, if the universe expanded from a “point”, that would be smaller than the Planck volume, thus the universe would be within a Black Hole. From what we know about those, no expansion.

Once we don’t have the universe expanding from a point, we cannot argue that it expanded from one point in some sort of “stuff”. If the universe is the “stuff” itself, and it’s everywhere, and expanding from everywhere, exit the argument about a “point”.

The argument about a “point” was that: why this particular point? Why not another “Quantum Fluctuation” from another “point” in the “stuff”. Why should our “point” be special? Is it not scientific to believe in the equality of points? Except points have measure zero in three dimensional space, and thus it’s more “scientific”, “mathematical” to suppose the universe expanded from a non-measure zero set, namely a volume (and it better be bigger than the Planck Volume).

So the argument that there should be many universes because there are many points and many Quantum (Gravity) fluctuations flies apart.

Remains the argument that we need Cosmic Inflation. Yes, but if the universe expands from all over, all over, there is only one such. Cosmic Inflation does not have to appear at all points generating baby universes, It becomes more like Dark Energy.

Speaking of which, why should we have two Cosmic Inflations when we already have one? Even my spell checker does not like the idea of two inflations. It does not like the “s”. Ah, yes, the existing Big Bang needs its own Inflation.

Yet if there is only one inflation, presto, no more standard Big Bang, But then what of Helium, Lithium, etc? How do we synthesize enough of those? Well maybe we would have much more time to synthesize them, inside stars… Especially super giant stars.

Another word about these Quantum Fluctuations. Are they the fundamental lesson of Quantum Physics (as the Multiversists implicitly claim)? No.

Why? There are several most fundamental lessons about Quantum Physics. Most prominent: the DYNAMICAL universe is made of waves. That fact, by itself implies NON-LOCALITY. It also implies neighborhoods, no points, are the fundamental concepts (one cannot localize a wave at a point). This is the origin of the “Quantum Fluctuations”.

So we just saw that “Quantum Fluctuations” may not be the most fundamental concept. Fundamental, yes, but not most fundamental. When debating fundamentals with the Devil, you better bring exquisite logic, and a Non-Local spoon, otherwise you will be Quantum fluctuated out.

Patrice Ayme’

No Multiverse, No Teleportation. Yet Quantum Consciousness?

June 27, 2015

There is a flaw, at the very root of the definition of the Multiverse:

Multiverse partisans believe anything, any physics, is possible. However if such is the case, among those possibilities, the universe is one of them. But then, if the Universe exists, there is just one universe, and the Multiverse can’t be!

Logic is a terrifying thing for those who have too little…

[The preceding is actually the latest variant, thanks to yours truly, of the 25 centuries old Cretan Paradox.]

We are led by some physicist who, not only have little knowledge, and little imagination, but they don’t have much logic, either! We look up to physics, because we look up to intellectual, or, more precisely, logical, scientific leadership. Prominent statements about the “Multiverse” or “Teleportation”, though, go the other way.

"Teleportation" Is About States, Not Particles. Nothing Simplistic!

“Teleportation” Is About States, Not Particles. Nothing Simplistic!

In one of the world’s major science museum, instruction is conducted for children between the age of 4 and 94 years old. Somewhere above the mastodonts and triceratops’ fossils is an special exhibition of the science of science-fiction.

An exhibit was about “teleportation”. There I was informed that particles had been successfully “teletransported” by “scientists” already.

I was so pleased to be informed of this that I teletransported all those who believe such inanities to a mental asylum.

They make a drastic mistake: confusing “particle” and “state”.

Particles cannot be “teletransported”. To pretend otherwise is a complete affabulation. What can be “teletransported” are Quantum States.

The staff of Sciencealerts, 22 September, 2014, used the following banner: “Physicists have quantum teleported a particle of light across 25 kilometres.”

No, they did not. They teleported the state of a third photon.

This sort of confusion goes to the core of the mental retardation in which physics has spent most of the Twentieth Century. I pointed out that it originated with Einstein. Einstein made the following statement, which I view as an extreme error:

“Energy, during the propagation of a ray of light, is not continuously distributed over steadily increasing spaces, but it consists of a finite number of energy quanta LOCALIZED AT POINTS IN SPACE, MOVING WITHOUT DIVIDING and capable of being absorbed or generated only as entities.”

That opinion of Einstein  above,  “the propagation of a ray of light… consists of a finite number of energy quanta LOCALIZED AT POINTS IN SPACE, MOVING WITHOUT DIVIDING” is complete affabulation, a fantasy. Yes, I know, Einstein got the Nobel Prize in Physics for it, and, thus, by saying this, I do not just grab Einstein by the horns, but the entire physics establishment. As Martin Luther would say, though, I see no other way…

I affabulate, and fantasized too, most often. However, when I do, while searching for truth, I try to respect known, well-established facts. In 1905, Einstein could imagine things about photons the way he did. Why not? It was natural: from Lucretius to Newton, most thinkers believed in particles. Particles were supposed to be the ultimate atoms of matter (atom means, in Greek, what cannot be divided).

However, since then, facts have intervened. The “particle” hypothesis became untenable. Indeed, the particular effect, how,  the Quantum shows up, is only how the energy of fundamental processes is released. In complete conflict, how the fundamental process proceeds is all about waves.

Einstein himself, after talking extensively about this with the (physicist and) philosopher Karl Popper, came to write the “EPR” paper… what is now called TELEPORTATION.

Einstein called this teleportation of states a “spooky interaction at a distance“. In truth, it’s an obvious consequence that fundamental processes are computed with waves, and waves are, by definition, NON-LOCAL.


Quantum Computing: What’s the Difference, And How Conscious Is It?

Present computing is similar to computing with water canals, one primitive manipulation at a time. Quantum Computing will be about computing with the interferences waves bring.

For more on Quantum Waves:

And there a quandary is presented: Quantum behavior has much in common with the attributes of consciousness. Thus a full computer may well behave unpredictably, and as if it had consciousness, but also, truly, be conscious. We wouild be not just facing Artificial Intelligence, but Artificial Consciousness.

Skynet may not just acquire control, but be sentient…

This, I do believe, is a real “danger”. Working on the Quantum Computer, is working on Artificial Consciousness. However, the proximal danger is that the aura of contagious stupidity has infected what passes for political leadership. To with European “leaders”, leading into the abyss, because the Greek leader has decided to submit the latest austerity measures to a referendum by the Greek People.

Does not the Greek Prime Minister know that the People does not rule? Demo-cracy = Demos Kratos, People Power. Not what we have. How come the Prime Minister of Greece does not know the basics of the corrupto-world we live in? Democracy is just a word polite people of wealth and taste use to mask plutocracy.

The Greeks want a referendum on whether they want to suffer some more? Unforgivable. So negotiations of the worthies with uppity Greece are interrupted. The CE chief, J-C Junkers is little more than a polyglot Mafioso, having managed the tax evasion of hundreds of billions of Euros of hundreds of companies, when he “led” Luxembourg. Now he can talk tough.

Insanity in physics has shown the way to insanity in politics and ethics. Inspired by the Schrodinger cat who is supposed to be both dead and alive, our great leaders thought they could get away with being all about money, and all about the people. If you don’t like this universe, go live in another.

(OK, maybe our great political leaders do not know enough physics to think this consciously; however the little critters who advise them, and write their discourses for them have themselves friends who feel they are very smart, and that physics says one can be all things to all people, at the same time. So the pernicious influence of mad physics go far, that way. And it has penetrated ethics, indeed.)

Even the Pope has noticed that supposedly refined economics, such as “cap and trade” (a European invention now used in California) were obviously inspired by the Devil. He condemned them. But, nowadays, like Schrodinger’s Cat, our great leaders imagine they can be the Devil and the Good Lord at the same time, in different places, and we will still embrace their feet religiously, our hearts frantic with unbounded admiration.

Time to cut the Gordian knot, with a very sharp sword. A sword cannot cut the universe in two (as the naïve Multiversists believe), but it can certainly cut the crap. And teletransport minds to a state closer to reality.

Patrice Ayme’

Why Mathematics Is Natural

April 21, 2015

There is nothing obvious about the mathematics we know. It is basically neurology we learn, that is, that we learn to construct (with a lot of difficulty). Neurology is all about connecting facts, things, ideas, emotions together. We cannot possibly imagine another universe where mathematics is not as given to us, because our neurology is an integral part of the universe we belong to.

Let’s consider the physics and mathematics which evolved around the gravitational law. How did the law arise? It was a cultural, thus neurological, process. More striking, it was a historical process. It took many centuries. On the way, century after century a colossal amount of mathematics was invented, from graph theory, to forces (vectors), trajectories, equations, “Cartesian” geometry, long before Galileo, Descartes, and their successors, were born.

Buridan, around 1330 CE, to justify the diurnal rotation of Earth, said we stayed on the ground, because of gravity. Buridan also wrote that “gravity continually accelerates a heavy body to the end” [In his “Questions on Aristotle”]. Buridan asserted a number of propositions, including some which are equivalent to Newton’s first two laws.

Because, Albert, Your Brain Was Just A Concentrate Of Experiences & Connections Thereof, Real, Or Imagined. "Human Thought Independent of Experience" Does Not Exist.

Because, Albert, Your Brain Was Just A Concentrate Of Experiences & Connections Thereof, Real, Or Imagined. “Human Thought Independent of Experience” Does Not Exist.

At some point someone suggested that gravity kept the heliocentric system together.

Newton claimed it was himself, with his thought experiment of the apple. However it is certainly not so: Kepler believed gravity varied according to 1/d. The French astronomer Bullialdius ( Ismaël Boulliau) then explained why Kepler was wrong, and gravity should vary as, the inverse of the square of the distance, not just the inverse of the distance. So gravity went by 1/dd (Bullialdius was elected to the Royal Society of London before Newton’s birth; Hooke picked up the idea then Newton; then those two had a nasty fight, and Newton recognized Bullialdius was first; Bullialdius now has a crater on the Moon named after him, a reduced version of the Copernicus crater).

In spite of considerable mental confusion, Leonardo finally demonstrated correct laws of motion on an inclined plane. Those Da Vinci laws, more important than his paintings, are now attributed to Galileo (who rolled them out a century later).

It took 350 years of the efforts of the Paris-Oxford school of mathematics, and students of Buridan, luminaries such as Albert of Saxony and Oresme, and Leonardo Da Vinci, to arrive at an enormous arsenal of mathematics and physics entangled…

This effort is generally mostly attributed to Galileo and Newton (who neither “invented” nor “discovered” any of it!). Newton demonstrated that the laws discovered by Kepler implied that gravity varied as 1/dd (Newton’s reasoning, using still a new level of mathematics, Fermat’s calculus, geometrically interpreted, was different from Bulladius).

Major discoveries in mathematics and physics take centuries to be accepted, because they are, basically, neurological processes. Processes which are culturally transmitted, but, still, fundamentally neurological.

Atiyah, one of the greatest living mathematicians, hinted this recently about Spinors. Spinors, discovered, or invented, a century ago by Elie Cartan, are not yet fully understood, said Atiyah (Dirac used them for physics 20 years after Cartan discerned them). Atiyah gave an example I have long used: Imaginary Numbers. It took more than three centuries for imaginary numbers (which were used for the Third Degree equation resolution) to be accepted. Neurologically accepted.

So there is nothing obvious about mathematical and physics: they are basically neurology we learn through a cultural (or experimental) process. What is learning? Making a neurology that makes correspond to the input we know, the output we observe. It is a construction project.

Now where does neurology sit, so to speak? In the physical world. Hence mathematics is neurology, and neurology is physics. Physics in its original sense, nature, something not yet discovered.

We cannot possibly imagine another universe where mathematics is not as given to us, because the neurology it is forms an integral part of the universe we belong to.

Patrice Ayme’

American Versus European Universities

April 5, 2015

Thinking now depends upon thinking yesterday, and the institutions and traditions it established then and how. Thus, to understand the different philosophies of education in Europe and the USA, one has to unveil history.

History determines initial conditions. From them, through systems of differential equations, flow the evolution of sociological reality.

The public educational system in Europe is at least 19 centuries old. The Roman empire used it. Poor students received room and board from the state under Trajan: the alimenti.

The public education system per se did not survive the corruption of the Roman empire by terminal plutocratization. Yet, its spirit was transferred to most Christian monasteries. However, simultaneously, Catholic Fundamentalism destroyed Romanitas, and even knowledge (quite a bit as Muslim Fundamentalists in the Middle East now).

Europe-Wide Famous Philosopher & Singer Abelard Taught At Notre-Dame Predecessor

Europe-Wide Famous Philosopher & Singer Abelard Taught At Notre-Dame Predecessor

By the Sixth Century, the successor state of Rome, the Imperium Francorum, started a systematic counter-attack against Catholicism. The Franks promoted secular education, brushing off the (lethal) threats of the (impotent) Pope (Gregory The Great).

By the Eight Century, the Carolingians made secular education of the public a mandate for all religious establishment, including churches, monasteries, cathedrals.

All over Europe. Including England after 1066. This is why professors were cleric.

This is also why European universities have no police, to this day (they were within cathedral grounds, initially).

However, by the Twelfth Century, the faculty of art allowed some teachers to NOT be theologians (and marry without controversy; Buridan was an example of a non-cleric professor).

The power of universities was enormous then. Abelard used his pulpit at the Paris Cathedral School to oppose the Second Crusade and Saint Bernard. (Abelard’s arguments lost, short term, but won, within 2 centuries.)

When the University of Paris got its entire body out, it extended from one end of the capital to the other. A year long strike in 1200 CE forced the papacy to authorize the teaching of Aristotle.

By 1300 CE, supported by his English vassal, the king of France, crushed the Pope and his army, the Templars. Philippe IV Le Bel’s aides were commoners, highly educated youth without fortune or honorable pedigree who thought the church ought to pay taxes.

Clearly education has been associated to progress and revolution in Europe, for 15 centuries. This has long increased its sacred aura, and its divine mission of global study.



American universities have a very different origin. They were mainly founded by powerful men.

Stanford, for example, was founded by the charming plutocrat, governor, and senator, with the eponymous name. Stanford used Chinese workers (who had few rights), to build railways…. While campaigning against the Chinese race.

Same story all over: in 1876 the trustees of the estate of Johns Hopkins, a banker and railroad magnate, had founded the university named that way, and the model spread all over: wealthy people create a wealthy university and they and their descendants, and friends control it (if it sounds like the banking system, it’s no coincidence).

Sometimes there are disagreements: the founding president of Stanford disagreed with Ms. Stanford, who headed the board of the university. Nothing that some strychnine could not solve: as she died, Ms. Stanford declared that: “… to be poisoned by strychnine is a horrible death…” Her jaws were already locked. Stanford University wisely buried the story.

Thus American universities had always a “conservative” (namely pro-plutocratic) bias. They were created by power, by huge financial power. They are not an independent power, just a dog on leash, trained to bark after all true intellectual tendencies.

The European University system was already a power, nine centuries ago, at the time of the “Cathedral Schools”. And its power was not, never, about money, or the police, quite the opposite. It was about the absolute, religious respect of study.

In “Excellence V Equity”, The Economist opines that: “The American model of higher education is spreading. It is good at producing excellence, but needs to get better at providing access to decent education at a reasonable cost.”

The same article vastly exaggerates the profits the American Universities brought. For example, it attributes the discovery of the jet engines to American higher learning. In truth, it’s the Germans, distantly followed by the British, who developed jet engines. Americans captured German jets and scientists. Even years later, remaining Nazi jets outperformed the American copies.



When one looks at history on the largest scale, one has to recognize the USA has been the world’s mightiest power for at least 150 years. On paper, the European colonial powers (Britain, France, Germany, Italy, the Netherlands, Spain, Portugal) because of their empires, looked more powerful. But that was just fluff, paper power. European empire depended upon fragile global mindsets… Which did not resist the concentrated punch of the American nation.

Mightiest economic power, that is.

However, not so intellectually. During those 150 years, the USA has remained a cultural dwarf. Probably the greatest American intellectuals were/are Nobel Laureate physicists, say Feynman or Weinberg. (And they are not of the order of the main discoverers of Relativity, say Lorentz and Poincare’ with their local time theory.

In sociology, philosophies, and more generally humanities, American universities produce, at best, parrots.

Even in science, tracking not publications, but fundamental breakthroughs, the USA come short. So far we are waiting for the first American thinker that will inflect history (as many European thinkers have).

However tremendous propaganda hides this. The best example is the transistor. Truly a Franco-German invention (in a French company employing also German scientists), it was attributed to Americans, who got the Nobel, for declaring they had invented the device, days before the French company started mass production.

So are American universities excellent? For the established order, yes. For civilization?

Only if the collapse into plutocracy is stopped. As it is, the principal notion American universities foster is money (and thus plutocracy). It does not matter how much lipstick one puts on that quadruped.

The first notion the universe teaches us is precisely the obverse. The universe teaches us that money, power on other people, does not matter. At all. On this intuition was founded the European University system, and it is exactly the notion which eludes the USA.

So the last thing the planet needs is to copy the American University model. It would pervert, it does pervert, the heart of the soul of mind.

Instead, it is the public, free European University, still found in leading European countries, which depicts the future we want. Or that we actually need, since a plutocratic future will soon crash.

Patrice Ayme’

QUANTUM: De Tout Pour Faire Le Monde

January 24, 2015


Quantum Physics is so natural that it embraces the fundamental organizing principle of superior human intelligence: “Il faut de tout pour faire un monde”.

It is continually said that Quantum Physics is “weird”. Maybe it is, but much less than any alternative previously imagined, such as Classical Mechanics. Classical Mechanics rest on a handful of strict “laws”. Instead, as we will see, the Quantum rests on just one very general principle, but, from there, enables the great freedom of spaces galore.

Indeed what is the most obvious alternative, between Classical and Quantum?

True, at first sight, the world looks classical. Yet, the classical vision, that the world made of points, is very naïve.

Electrons Make Their Own Space Around The Nucleus

Electrons Make Their Own Space Around The Nucleus

An analogy helps.

One need to go back to biology. Centuries ago, it was thought that a human being originated as an “homunculus”: a human being, just much much smaller. The truth turned out to be different: instead of keeping the same system of idea, genetics and molecular biology brought in completely new systems. The older ones are still around, but they were mostly displaced, or even partly completely replaced, by new systems of ideas.

Similarly, physicists, for centuries, thought that in the physical universe, the smaller one would look, the more one would see just the same thing, space-time with points, ever smaller. Could the small be like the big, just smaller and smaller?

That would have meant that there was no different explanation to the inner working of what we see… From what we see. Looking at the very small would not have provided with a different system of ideas (although looking at a smaller scale had provided with new systems in biology).

Such was the Classical Prejudice: smaller was not supposed to be any different. Yet plenty of phenomena were found that the “small is not any different” view could not explain.

And indeed, nature is not like that. First, Planck found that supposing that light energy was emitted in lumps explained two mysteries (Lord Kevin had called them “dark clouds”). Einstein then explained the photoelectric effect by the reception of light in lumps too.

Jumping further than he should have, he then proposed the hypothesis of “lichtquanten”.

Where did those Planck-Einstein lumps, those “Quanten” come from?

The most natural explanation was waves. In a constrained space, stable waves happen only at some frequencies. This explanation appeared with Bohr, in the constrained spaces around atoms, and was generalized with De Broglie’s Wave Principle”:

“To any particle is associated a guiding wave”.

At that point, Quantum Physics was essentially done: if it was all about waves, the uncertainty principle was obvious.

Next one had to define what a “wave” could be. Well, something given by a wave equation (what else?). Notice the difficulty: wherever we look, it’s not obvious what a wave is (just rolling out the second order partial differential equation used for bow strings will not do; although that works for that, does not make it a general principle, as we are going to see!)

The De Broglie(-“Schrödinger”) equation was just the most obvious candidate, but others appeared, like the relativistic Klein-Gordon.

Dirac rolled out the most general, simplest wave equation, the square root of the most obvious relativistic wave. That first order Dirac equation required a new space, Spinor Space (discovered independently much earlier by the mathematician Elie Cartan in 1913). It predicted a new particle: the anti-electron.

So Quantum Physics is actually the simplest imaginable logic to organize Nature as we have observed it. It’s not “weird”, it’s enlightening.

Notice that I implicitly solved the “Measurement Problem”: the concept of wave is, well wavy, fuzzy (actually, Quantum Waves penetrate walls, to some extent). So we cannot be sure that the “wave-function” we have are really perfectly defined, as a depiction of all what “reality” is, to START WITH (actually there are non-linear, arbitrarily close approximations of the “Schrödinger” equation).

Actually the history of Quantum Physics (and QFT) is a succession of wild guesses about what the wave equations could be. A few of these guesses worked, most of them did not (in many cases because non-linear effects had been neglected, such as “Normalization”).

De Broglie’s “Guiding Wave” class of theories was rejected (erroneously, it turned out) by some arrogant mathematicians. However, very recent experiments showed that some basic Quantum behavior can be duplicated experimentally with waves in fluid mechanics.

Bohm’s approach is just the PARTICULAR case of De Broglie’s general approach; as Bohm was born in the USA, the Anglosphere refers to him, but it’s truly De Broglie who invented the whole thing.

Reintroducing particles, as Bohm does, is throwing the baby with the bath. The bath, and the baby, are made of waves. Nobody said that they have to be linear.

(David Bohm, a physics professor at Princeton, USA born, was thrown out of the USA for… thinking. He was the first one to say that his 1953 theory was just part of De Broglie’s ideas. Bohm pursued his career in Brazil, and then England. In the late 1950s, he discovered the “Bohm-Aharanov effect”, the major fact that potentials were central to Quantum Physics, the very foundation of so-called “Gauge Theories” of Quantum Field Theory. )

And the Quantum is waving out there in many ways, in many spaces, some infinite dimensional. That’s the best realism we have.

It’s more fundamental than space and time, as we classically know them.

The classic picture of the universe was naïve. The Quantum vision changes everything. It provides us with enormously powerful new systems of ideas. It is intrinsically not just multidimensional, but, one could say, multiversal.

Common French wisdom has long proclaimed that :”Il faut de tout pour faire un monde” (One needs everything to make a world”). Philosophical systems embracing this principle are the most opposed to intellectual fascism. Intellectual fascism is the organization of one’s view of reality around a handful of axioms: religious fanaticism for a superstition is the archetype example.

Societies where Il faut de tout pour faire un monde are the most inclusive, and those were the open market of ideas can produce. They allow to make better ideas blossom, and bad ideas fade away.

It is comforting to know that Physics, deep down inside, works just the same.

To each context, its universe, yet, out of many, just one. It takes everything, including all sorts of spaces, to make a world. This is what the Quantum proudly proclaims.

Patrice Ayme’

Universe: Not Just Mathematical

August 14, 2014

Some claim the “Universe is mathematical”. Their logic is flawed. I show why.

Max Tegmark, a MIT physics professor, wrote “Our Mathematical Universe”. I present here an abstract I concocted of an interview he just gave to La Recherche. Followed by my own incisive comments. However absurd Tegmark may sound, I changed nothing to the substance of what he said:

La Recherche (France; Special Issue on Reality, July-August 2014): Max, you said “Reality is only mathematical”. What do you mean?

Tegmark: The idea that the universe is a mathematical object is very old. It goes all the way back to Euclid and other Greek scientists. Everywhere around us, atoms, particles are all defined by numbers. Spacetime has only mathematical properties.

La Recherche: Everything is math, according to you?

Formulation Before Revelation of Mathematization

Formulation Before Revelation of Mathematization

Tegmark: Think about your best friend. Her great smile, her sense of humor. All this can be described by equations. Mathematics explain why tomatoes are red and bananas yellow. Brout, Englert, Higgs predicted a boson giving mass to all other particles. Its discovery in 2012 at CERN in Geneva led to the 2013 Nobel Prize in Physics!

Tyranosopher [unamused]: Notice, Max Tegmark, that the “Nobel” thoroughly excites you. You brandish it, as if it were a deep reality about the universe. But, in truth, the Nobel is strictly nothing for the universe. It’s just a banana offered by a few self-interested apes to other self-fascinated apes. The Nobel has more to do with the nature of apish society, rather than that of the universe. In other words, we ask you about the nature of the universe, and you answer with the Authority Principle among Hominidae. You may as well quote the Qur’an.

Tegmark [unphazed]: There are an enormous number of things that equations do not explain. Consciousness, for example. But I think we will make it. We are just limited by our imagination and our creativity.

La Recherche: According to you, there is no reason that part of the world escape mathematics?

Max Tegmark: None whatsoever. All properties are mathematical! We potentially can understand everything!

La Recherche: As a Platonic mathematician, you consider mathematical concepts are independent of all and any conscious act?

MT: I am an extreme Platonist, as I think that not only mathematical structures are real, but they are all what reality is.

Relativity and Quantum Physics confirmed that reality is always very different from what one believes. Very strange and very different from our intuition. Schrodinger’s equation, the fundamental equation of Quantum Mechanics, shows that a particle can be in several places at the same time. Thus one does not try to describe the motion of this particle, but the probability of its presence in such and such a place.

But, a century later, physicists are still in deep disagreement about what it all means. I think this interpretation keeps dividing people, because they refuse to admit what goes against their intuition.

Tyranosopher: Notice, Max Tegmark, that you presented as a fact (“a particle can be in several places at the same time”) something you admit later is only an “interpretation”. That’s dishonest: an “interpretation” is not a “fact”.

Tegmark [livid]: The strength of mathematics comes from the fact that they have no inhibition. Strangeness does not stop them.

Tyranosopher: Indeed, that’s why, as a trained mathematician, I am very insolent.

La Recherche: Max Tegmark, is it your mathematical approach that makes you defend another controversial idea, that of multiple universes?

Max Tegmark: I really believe that human beings never think big enough. We underestimate our capability to understand the world through mathematics, but also our capacity to apprehend its dimensions. To understand that we live on a planet with a diameter of a bit more than 12,000 kilometers was a first, enormous, step. That this planet is infinitesimal in this galaxy, itself one out of billions, was another enormous step. The idea of multiverses is more of the same. We discover again, and more, that what we understand is only a speck of something much larger. That much larger thing is the Multiverses, of types I, II, III, and IV.

Tyranosopher: La Recherche’s Interview then proceeds further, but let me unleash a fundamental critique here.

I am a deadly enemy of the Multiverse, as I believe that it rests on an ERROR of interpretation of Quantum Physics (the one Tegmark presented as a fact above, before admitting that it was, well, only an interpretation). The fact that it is another desperate scaffolding erected to save the Big bang theory does not make it better.

Now for the notion that the universe being full of math. This is understood to mean that the universe is full of equations. Equations were invented in the Sixteenth Century. Many, if not most, equate mathematics with the art of equating.

What’s an equation? It’s something that says that two things independently defined, one on the left side of the equal sign, the other on the right side, are equal. Great. What could be simpler: what is different is actually the same!

Notice this, though: before you can equate, you must define what you are equating. On both sides.

An equation equates concepts independently defined. Ultimately, definitions are not mathematical (see on the Nature of Mathematics, to follow soon). At best, definition is metamathematical. Our metamathematical universe? End of Mr. Tegmark’s naivety.

When we get down to it, it’s more our philosophical universe, before it’s our mathematical universe: no definitions, no equations.

How can a physicist make such a gross logical mistake? Are they not supposed to be smart? (OK, it’s smart to sell lots of books).

What allows to make that logical mistake? Education, or lack thereof. Many a mathematician will make the same mistake too. The problem is that neither conventional mathematicians, nor, a fortiori, physicists, are trained logicians. They just play some in the media.

Who needs a multiverse? It seems the universe of science is already too large for many physicists to understand.

Patrice Ayme’


November 17, 2010



Theme: Is there extraterrestrial life? Extraterrestrial intelligence? A related question: how big is the universe? On all these subjects considerable and very surprising progress is in the making. I describe some of the new ideas and facts in plain language, from Plate Tectonics to Cosmic Inflation.

Facing the enormity of it all, honest minds will find honor and pleasure in telling the truth, and nothing but the truth (carefully distinguishing it from hope we can believe in). Some physicists, searching for the limelight, have presented some science fiction, or some science fantasy, or let’s say scientific working hypotheses, philosophically grounded, as real, established science. This is misleading and dangerous: science is truth, and that is why the public supports it. Let’s keep it that way.

Sometimes all that science does, but that is fundamental, is to find new uncertainties we did not previously suspect. A basic humility that needs to be taught to people and politicians is that knowledge is not just about learning what we know, but also about learning that there are new dimensions to what we don’t know.

One certainty: our Earth is rare and fragile. Earth was a primordial deity of the Greeks, Gaia, viewed as female, nourishing humankind. Gaia is an on-going miracle, of self regulation, with extremely complicated biology and physics entangled. The more we observe the cosmos, the more we see that’s hell out there. Gaia is a rare deity, Pluto is the rule. Here are some inklings.



Many planets have been discovered around many stars. Solar systems (= several planets orbiting the same star) have also been discovered. In one of these systems three planets around a dwarf red star are all in the inhabitable zone (= neither too cold nor too hot, so that liquid water exists on a planet there). One of them is smack in the middle of the balmy zone. It seems clear that most stars will be found to have planets (we are above 30%, and our present detection methods are very crude).

Still there does not seem to be many civilizations out there. As Enrico Fermi put it:”Where is everybody?”

Far enough from the dangerous galactic center, with its zooming stars, high radiation, and gigantic black hole, but not far enough to miss the full wealth of the periodic table, with its many elements, there is a narrow band all around the galaxy, the inhabitable zone, with at least 50 billion suns (within the trillion suns of the Milky Way).

Everything indicates that there are billions of colonizable planets in the inhabitable zone of our galaxy: colonialism has a great future (once we find how to get there). Life could have started on many of these planets. But on most of these, it was quickly annihilated: hellish, incandescent “super-earths” (rocky planet with masses up to 10 times Earth) ready to fall into their star, abound.



The obvious candidate for the start of life is next door. It is Mars (Venus may have qualified too, the early Sun being 25% weaker; but Venus has long turned into hell, destroying all biological remnants). Everything indicates that life started on Mars. It would be very surprising that it did not.

Probably even OUR life started there. Impacts of asteroids and comets would have thrown living material from Mars to Earth. Mars meteorites have been found in Antarctica, lying on the ice. It has been observed that the temperatures within a Mars meteorite could stay very low: no more than around 40 Celsius, during the entire Mars-Earth transfer.

The Earth stayed too hot for life much longer than Mars, due to its much greater thermal inertia, large, intense radioactive core, greater number of impacts, and having thoroughly melted after the giant impact which created our life fostering Moon.

But then, after an auspicious start, Mars lost most of most of its atmosphere (probably within a billion years or so). Why? Mars is a bit small, its gravitational attraction is weaker than Earth (it’s only 40%). But, mostly, Mars has not enough a magnetic field. During Coronal Mass Ejections, CMEs, the Sun can throw out billions of tons of material at speeds up to and above 3200 kilometers per seconds. It’s mostly electrons and protons, but helium, oxygen and even iron can be in the mix.

The worst CME known happened during the Nineteenth Century, before the rise of the electromagnetic civilization we presently enjoy. Should one such ejection reoccur now, the electromagnetic aspect of our civilization would be wiped out. It goes without saying that we are totally unprepared, and would be very surprised. Among other things, all transformers would blow up, and they take months to rebuild. we would be left with old books in paper, the old fashion way. A CME can rush to Earth in just one day. (Fortunately the Sun seems to be quieting down presently, a bit as it did during the Little Ice Age.)

When a CME strikes a planet, the upper atmosphere is hit by a giant shotgun blast. Except a shotgun blast goes around 300 meters per second, 10,000 times slower than a CME. So, per unit of mass, the kinetic energy of a powerful CME is at least ten billion times more powerful than a shotgun blast. Since the liberation speed is going to be around ten kilometers per second, on an average life supporting planet, to be hit by projectiles going at 3,000 kilometers per second is going to knock all too much of the upper air atoms into space. That’s how Mars lost most of its atmosphere. And thus its ocean and much of its greenhouse. So now Mars is desperately airless, dry, and cold.



A cluster of new stars forming in the Serpens South cloud


Both Mars and Venus are at the limit of the inhabitable zone. But Venus does not have a magnetic field worth this name. Thus Venus lost a lot of its hydrogen (hence water; the rest is tied up in sulfuric acid, H2SO4).

It is known that the Earth’s strong magnetic field originates from the motion of huge masses of liquid metal within.

So a solar wind shield, a magnetosphere, is tied to the plate tectonic of a very dynamical planet with a powerful nuclear reactor deep inside. Whereas Venus and Mars are tectonically inert, at least, most of the time; maybe they wake up every half a billion years or so, for a big eruption. If Mars and Venus had been very tectonically active planets, may be they would be teeming with life (but that depends upon the distribution of heavy radioactive nuclei in a gathering solar system, an unknown subject, obviously non trivial, since Earth got them, and not the other two).

In any case the Earth’s magnetic shield protects life from the worst abuse of the Sun, as it deflects most of the CMEs out and around (they sneak back meekly as Aurora Borealis).

Another factor in the stable environment Earth provides for life is the Moon. The Earth-Moon system divides its angular momentum, between each other and the orbital motion of the Moon. This prevents the Earth to lay its rotation axis on its side: such a wobbling could not be compensated by the rest of the system. So it does not happen.

Mars, though, not being so impaired, wobbles between 15 and 35 degrees (causing weird, pronounced super-seasonal variations).

In any case, everything indicates that extremely primitive life appears quickly. But complex life needs time, lots of time, to evolve. Animal life and intelligence needs even more time. However, what strikes me in the new solar systems discovered so far, is how alien and unstable they are (this is partly a bias of the present detection methods).

Many of these systems have huge Jupiter styles planets in low orbit around their stars. It’s pretty clear that they fell down there, destroying the entire inner system in their path.

Other notions threaten life; gamma ray explosions, supernovas, and simply passing next to another star, throwing a solar system into chaos, and some Jupiters down into a fatal spiral. Our Sun, though, is pretty much cruising far from any star, in a cosmic void right now, perhaps left by a supernova explosion. Maybe we have been lucky for 4 billion years.



Many a physicist, or cosmologist, talks about the beginning of time, and other various notions pertaining to the grandest imagined machinery of the universe, as if they had found God, and it was themselves they were looking for (as Obama would put it). They claim to know their garden, the universe, pretty well (having apparently being there, at the moment of creation).

Verily, what we know for sure is what we see in pictures, and that’s plenty:

Hubble Ultra Deep Field: 10,000 galaxies. How many men?

Notions such as the “edge of the universe” are much less scientifically robust than some scientists claim. When some talk about the “First Three Minutes”, one can only laugh, even if countless Nobel Prizes in physics subscribe to the notion. Physics is relative, the search for glory, absolute. At least so do monkeys behave.

The concept of time in Quantum Mechanics and Relativity are in complete contradiction. One is absolute, the other relative. So nobody knows for sure what time is, and what is truly its relation to space (nor do we know what space is, much beyond the pretty pictures given by the telescopes). Speaking of the history of time is completely meaningless, except as poetry. Or scientific sounding poetry. Too many holes in the logic.

Even using standard science to buttress one’s reflection, the size of the universe could well be at least a 1,000 bigger than the 14 billion light year piece that we presently observe. In truth, we have literally no idea. Even when sticking to conventional theory, which predicts only one thing in that respect, namely that the universe is bigger than what we see (it predicts it by requiring it actually, see below).

Another thing is sure: it’s incredibly immense out there, and not just in physical size, but also in conceptual size. We know lower bounds for the universe in size and complexity, but have no idea whatsoever about the upper bounds. Dark Energy is a perfect example. Fifteen years ago, Dark Energy was unknown. Now it makes up 74% of the mass of the universe.



It is not a good thing when highly uncertain science is presented as certain, just as much as really true parts of science. It is not just immodest. It undermines, and threatens, science deeply.

Because presenting as certain what is not so is just a lie. But science is truth, and that is why society supports it.

To present as true what is not so ridiculizes the notion of certainty. When, ultimately, the ineluctable collapse of immodest pseudo-certainty occurs, all of science gets slashed with doubt. American witches can run as republican candidates for the US Senate on completely crazed platforms, mumbling about mice with human brains (this happened in the last USA election). Scientists ought not to make craziness respectable by leveraging it themselves. Crazy is crazy, especially when a scientist does it. It’s craziness squared.

Make no mistake: speculation is central to science and even more to philosophy. Just speculation ought to be labeled as such. When I talk about my own TOW theory, I do not present it as fact and certitude.

Most of recent (last 120 years) physics was totally unexpected. A lot of it is true, no doubt, in some sense. Some of it is completely false, too, most probably, in the most fundamental sense. The more fundamental science gets, the more it gets subjected to representations which can be misleading. Thus when some physiology or solid state physics gets established, it will not be shattered. Not so for Quantum Field Theory (most of which being an extrapolation over an energy domain where it has not been tested).

Science, like philosophy, is not just a body of knowledge, but also a method. Both have to use common sense as much as possible. Philosophy uses the external edge of knowledge, the first inklings, the first warnings, the smallest indices, the irreproducible experiments. Thus any scientist searching for really shattering new science will pass through the philosophical method, as a mandatory passage to greater certainty.

When science is proclaimed, it has to be certain. Science is truth in which one can have faith. A lot of the most glitzy cosmology comes short of that. (Thus the adventures of the alleged Big Bang should not be used as an argument to fund expensive accelerators: there are enough good reasons to fund them, not to use the bad ones!) The surest part of cosmology is actually its pretty pictures.



All of recent conventional cosmology’s biggest and noisiest concepts rest on something called the Inflaton Field. One could say that it is just as much a rabbit out of a hat as in the best circus acts. There is no justification for it, except to explain what we see: something very big, very homogeneous, apparently contradicting relativity. The universe in its entirity.

The mystery that Cosmic Inflation tries to explain was this: as new regions of the universe come into view (at the speed of light!), it is observed that the new regions are exactly as the region we already know; same aspect, same background temperature, etc. How did they know how to look the same? They could not have talked to each other! Light did not have time to go from one to the other!

According to standard Einsteinian relativity, our region, and those regions, some on the opposite side of the universe from each other, have no common history! (Those new regions which appear are NOT within our past light cone… To use relativity lingo.)

In the USSR, Einstein’s work was criticized in minutia, for ideological reasons (Note1). So the great astrophysicist Zeldovitch came up in 1965 with the idea of inflation (the discovery is attributed to Guth, 1980, in the USA, because the USA buried the USSR, and America is a super power blessed by God, as the resident of the White House reminds his flock every day).

Einstein’s Relativity speaks of the speed of light within space, but not of the speed of space (so to speak). Speed of light is limited within space, speed of space is not limited. So it was breezingly supposed space had inflated at a gigantic speed, before slowing down. So the new regions coming into view had a sort of common history, after all.

From a philosophical perspective, to invent an explanation to explain a specific effect is called an ad hoc hypothesis. It can be a correct way to advance science, if it has predictive power (But differently from the neutrino, or the W, or the Higgs, how do you check for it? Finding the Inflaton particle? The Inflaton is supposed to have given birth to most other particles). In the meantime, it provides some hand waving to explai away an otherwise obvious contradiction with Relativity.

But it is not enough that some of the best theories in physics are weird, with the logical consistency of gruyere.

The apparent discovery of Dark Matter and especially Dark Energy, have brought a new twist. Dark Energy is completely unexplainable.

Dark Energy attracted attention to the fact that Quantum field theory is both the most precise and the most false theory ever contemplated (QFT is off in its prediction of vacuum energy by a factor of ten to the power 120, or so, the greatest mistake in theory, in the entire history of hominids… it would make even baboons scream in dismay.)


Billions of galaxies can be seen when we look as far as we can see. Here is a tiny detail, as far as we can see, without using a gravitational lens. [NASA-ESA Hubble]. Baffling. We are going to need a bigger imagination.

It’s hard for me to escape the feeling that the universe is much older than what standard cosmology believes, as I look at these very ancient, but very diverse galaxies in a piece of sky (Note 2).

Dark energy was discovered when it was realized, in super novae studies, that the universe’s expansion was accelerating (so energy is injected).

A natural question, though is this:”If, as it turned out, the expansion is accelerating now, maybe it was at standstill much earlier?” Then the universe, even the small piece we can see, would be older and bigger than we have imagined so far. Don’t be afraid of the simple questions. Einstein asked himself at 16 what would happen if he looked at a mirror when going at the speed of light (Note 1).

Time will tell, as long as astronomy gets massively funded. Astronomy (astrophysics, cosmology, etc.) is one of the fields of science where fabulous progress is certain if it gets funded enough (the breakthroughs it made and will make in basic technology, to design the new instruments are very useful to the rest of society too).

In any case, the national debt is secure: it has a long way to go, before it can fill up the entire universe…


Patrice Ayme


Note 1: Einstein’s views on space and time came under the label “Theory of Relativity”. That incorporated Lorentz’s work on the correct space-time transformation group compatible with Maxwell equations.

That is why looking at a mirror will not work, at the speed of light, if the conventional addition of speed used by Galileo was really true, because light could not catch up: light could not be seen at the speed of light (just as sound cannot be heard if one goes away from it at the speed of sound). So Galilean Relativity did not work (the first scientists who pointed that out were not Einstein, but Lorentz, Fitzgerald, and Poincare’, among others; Lorentz got the Nobel Prize for it).

Soviet scientists were irritated by the exaggeratedly sounding “Relativity” (since only Marx was absolute). They pointed out that the “Theory of General Relativity” should be called the “Theory of Gravitation”, and then they made more pointed critiques.

Ideology is important in science. The “multiverse” theory, a support of string theory, is a case in point. The multiverse ideology exists, because string theory has nothing to say about the measurement process, so it sweeps that inconvenient truth below an infinity of rugs. The multiverse cannot be fought scientifically, because it is not science. But it is philosophically grotesque, since it consists in claiming that all lies are true, somewhere else.


Note 2: The oldest galaxy was detected by Europeans at the Very Large Telescope in the high Chilean desert, in 2004, using a galactic super cluster as a lens (giving the VLT an aperture between 40 and 80 meters), had a redshift of 10, with an apparent age of more than 13 billion years.


Note on the notes: What did Einstein do in Relativity? He used an axiomatic method, with two axioms only (Principle of modern Relativity and Constancy of Light Speed).

Both axioms had been proclaimed by Poincare’, as Einstein knew, but Poincare’ had not realized that, with these two axioms only, all the known formulas could be derived in a few pages, as Einstein did (after doing away with the “Ether”, the substance in which waves were supposed to be waving). Einstein said he was influenced by empiricist philosophy from Hume and Mach.

The final story has not been written yet: and if the waves made the space? (TOW.)