Abstract: “Innate Knowledge” is a stupid idea. The truth is the exact opposite: LEARNING IS EVERYWHERE, OUT THERE. Learning is the opposite of innate. This insight has tremendous consequences on our entire prehension of the world.

(It will not escape the cognoscenti that Socrates, Plato, and Aristotle, were partisans of innateness. And that believing in the superiority of inheritance is a necessary condition for racism, fascism, slavery, and hereditary plutocracy as fairness. That makes the likes of Chomsky and Dawkins self contradictory)

Subjective time slows down in smaller brains.

Fastest Wings, Fastest Brains. Anna Hummingbird California

Fastest Wings, Fastest Brains. Anna Hummingbird California

Those wings go at 100 Hertz, four time the human perception limit.

Thus time is relative; just as light-clock time slows down in a fast reference frame, or in a heavy gravitational field, neurological time slows down in a small neurology.

(Interestingly, the deepest reason for the slowing of time… boils down to the same in the Relativity case as in the Neurological one! It’s all about energy.)

A lot of ideas on instinct came from studying insects: insects seem to know all, without having studied anything. However, if insect time flows slowly, insects actually have time to learn.

And that’s rendered easier by having brains adapted to their environment. If they have only a few tricks to learn, and what looks like ten seconds for us is an hour for them, no wonder they learn lots. Thus slow in small explains how “instinct” works.

Hence behaviors one describes as “instinctive” are just fast studies. A lot of the silliness about “genes” is thus dispelled, and the mind comes on top.

And hunting influences it. Thus the Dark Side dominates time itself, not just the hierarchy of values!

On the way, my theory of thoughts as material forms is rolled out, once again, with the refined elegance of a low shrieking hypersonic bomber shattering all it wake.

[To avoid boredom, I put my own science/philosophy upfront, followed by a more conventional recap of the published experiments.]  


SMALLER ANIMALS TEND TO PERCEIVE TIME SLOWLY, a study published in the Journal of Animal Behavior has shown.

That smaller animals perceive time in slow motion did not surprise me at all.. I have wild (“Anna”) hummingbird friends. They can make a whole body shake 55 times per second (that allows them to shake off rain).

I was only surprised it took so long to find measurable evidence for this. Anybody who observes a bumblebee, or a humming bird, collecting nectar, will readily feel that they take so many decisions in fractions of a second, that it means that time flows slowly for these creatures: they take in a lot of information, analyze it, and act accordingly.

Seeing hummingbirds hovering still in the turbulent high winds, as I have, from a few feet away, proves this (I extract knowledge from my wild hummingbird friends). They have got to process a tremendous amount of information per hundredth of a second.

Having smaller brains allows for faster processing. Faster mental processing is an obvious advantage in the predator-prey universe we inhabit, and our ancestors have evolved in. Evolution was bound to stumble on, and exploit, that trait.



But there is a much more advanced insight one can have: faster brain processing explains (what looks like) instinct. I claim the following. (Most of what looks as) INSTINCT IS FAST LEARNING.

Let’s think: where do we get our knowledge from? Did we get it the easy way, knowing everything all along, as Socrates tried to demonstrate we did? Or did we have to do some effort, listening to our parents, observing our elders, listening to our teachers, spending years to learn to read and write, and then reading books, experimenting around.

Of course it is the latter: any honest chimp knows that much of life is spent learning, figuring things out. Mind dominates genes:

It is nature that is the instruction set of all and any animal. FAST LEARNING, or “unconscious” learning, SOLVES THE NATURE-NURTURE PROBLEM. If a bee can spend, what is perceived by the bee as hours learning something (in subjective, bee time), whereas it feels to us like seconds, we observe “instinct”, whereas the bee has the impression of being at school forever and ever.

Bee time is even accentuated by the nature of learning. According to me, thoughts are just brain geometry (that’s more general than neuronal geometry, as it involves more than axons and dendrites, but also other cells and topologies). One needs time to build those. In simpler, smaller brains, such constructions will go much faster.

It goes much faster from smaller dimensions: the signals, electrical or chemical, have much less further to go before they get to an enacting node (that’s why computer circuitry is made ever smaller to satisfy Moore’s “law”). In a smaller brain, there are also fewer dimensions and volumes, so the energy of signals takes much less long to ramp up (that’s related to how the ramping up of a light signal gave a delay giving the impression that neutrinos were going faster than said light signal).

“The fewer dimensions” aspects is where innate inheritance (from genes and the like) comes in. Say a simpler animal can distinguish only a few things, it’s going to be much easier, and much faster, to learn those few things rather than zillions of things, human style.

So how are the most intimate brain structures, even in a bee, the thoughts, built? Well from studying the environment and building quasi-representations of it.

One has, of course to have a theory of what thoughts are. Well, for me they are forms (so far so good would Plato say!). What can be seen (the etymology of the concept of idea).

But then, of course FORMS OF BRAIN STRUCTURES. Hey, what else? We know enough about the brain and cytology to know that forms in the brain exists, and all the way down to the Quantum level (where their meaning becomes as mysterious as the non local Quantum).

Anyway, the important point for the subject at hand is that thoughts, feelings and conditioned reflexes, that is, most of the instruction set for behaviors is NOT pre-coded by genes, but it is learned from the environment. It’s the environment that codes, tweaked by the genes.

I of course argue that even (apparently) unconditioned reflexes are also the result of learning. Animals learn, early on, to withdraw their paw/foot real fast when submitted to a painful stimulus (as they discover that it diminishes the pain).

Some will look at me with boiled fish eyes, as they know that unconditioned reflexes are, well, by definition, unconditioned. However, I believe that most of these apparently unconditioned reflexes are actually the product of learning.

I am a mountain runner, meaning that I can negotiate abominable terrain at very high speed, thanks to these apparently unconditioned reflexes, all the way into the many muscles of the foot. As a few people who tried to accompany me crashed spectacularly, I know quite well that even something as natural as ambulation is full of conditioned reflexes.

I have also noticed to my dismay that, when I am out of training, my brain processing could not keep track on descents I knew all too well, and I was in danger of exploding into the closest rock I could find.

OK, let me recapitulate what the scientists directly established:



The scientific study shows that smaller animals can observe movement on a finer, much faster timescale than bigger ones, allowing them to escape from larger predators (who looks to the small animals as if they were moving in slow mo).

Insects and small birds, for example, can see more information in one second than a larger animal such as an elephant.

How that works is philosophically obvious. In a large animal one needs enormous quantities of motor neurons to send the electricity to move those huge muscles. Those motor neuron packs, in turn, need to be hooked up with larger neuronal installations having to do with decision-making, deeper inside. All the energy has got to move ponderously: if, somehow, it did not, the animal may explode, from too much energy released too fast. And so on.

“The ability to perceive time on very small scales may be the difference between life and death for fast-moving organisms such as predators and their prey,” said lead author Kevin Healy, from Trinity College Dublin, Ireland.

The reverse was found in bigger animals, which may miss fast things that smaller creatures can rapidly spot.



The scientists looked at the variation of time perception across a variety of animals. They gathered datasets from other teams who had used a technique called critical flicker fusion frequency, which measures the speed at which the eye can process light.

Plotting these results on a graph revealed a pattern that showed a strong relationship between body size and how quick the eye could respond to changing visual information such as a flashing light.

Of those tested, animals with the fastest visual systems included golden mantled ground squirrels, starlings and pigeons.

Starling live in large groups and forms massive swirling flocks, related to the need to keep track of where mates are, to avoid collisions. Another reason, for the fast swirling, is that it makes it impossible for a predator like a falcon to get a clean hit. Many fishes’ species use the same trick to confuse predators (who, in turn have devised strategies to handle that! Humpback whales herd the fishes, before dashing through the mass).

One species of tiger beetle runs faster than its eyes can keep up, according to the team. It essentially becomes blind so needs to stop periodically to re-evaluate its prey’s position.

In humans, too, there are variations among individuals. Athletes, for example, can often process visual information more quickly.

This reinforces my observation above that many reflexes that are viewed as unconditioned are actually conditioned, including time perception itself. An experienced goalkeeper would therefore be quicker than others in observing where a ball comes from. This is similar to taxi cab drivers getting larger memory centers. But it affects time perception.

The speed at which humans absorb visual information is also age-related, said Andrew Jackson, a co-author of the work at TCD.

“Younger people can react more quickly than older people…” (Of course that’s not saying much as too many people are fully acquainted with saturated fats, booze, pot, and other mind gluing or wasting drugs…). One may wonder, though, if that has to do with the accelerated perception of time that people seem to experience as they age.

Indeed, if one measures internal time by how much geometric reorganization a brain undergoes, as it learns new things, learning lots would mean time in slow motion. (And conversely.)

“From a human perspective, our ability to process visual information limits our ability to drive cars or fly planes any faster than we currently do in Formula 1, where these guys are pushing the limits of what is humanly possible,” Dr Jackson told BBC News. “Therefore, to go any quicker would require either computer assistance, or enhancement of our visual system, either through drugs or ultimately implants.”

The current study focused on vertebrates, but the team also found that several fly species have eyes that react to stimulus more than four times quicker than the human eye. For a reason that I partly forgot, I had determined, long ago, that bees processed information up to ten times faster than human beings.

Humans can perceive TV flicker say at 20 Hertz; I have to assume that my pet hummingbirds with their 55 times per second body shake, and their 100 Hz wing beat have got to perceive the world at an even higher pace; hummingbirds actually catch insects in flight, to balance their diet with proteins; they do this by opening fully their elongated beaks, high-speed photography has revealed.


The common European eel, the leatherback turtle, and the blacknose shark had the slowest visual systems.

Although the eel and blacknose shark are relatively small, they have slow metabolisms which explains their slow visual systems.

The leatherback is a huge turtle that feeds primarily on slow-moving jellyfish. It may live more than a century. However, intriguingly, it is also the fastest reptile (up to 35 km/h), thanks to its giant flippers, and its metabolism cannot be that slow, as it is warm-blooded (!). So it seems that the slow nature of what it hunts primes on other considerations to explain why it did not invest in high-speed visual processing equipment. This is another case where the weight of the Dark Side on evolution is blatant.

Some deep-sea isopods (a type of marine woodlouse) have the slowest recorded reaction of all, and can only see a light turning off and on four times per second “before they get confused and see it as being constantly on”, Dr Jackson explained. Confused woodlice from lack of a demanding predator-prey environment.

“We are beginning to understand that there is a whole world of detail out there that only some animals can perceive and it’s fascinating to think of how they might perceive the world differently to us,” he added.

Graeme Ruxton, of the University of St Andrews, Scotland, another co-author, said: “Having eyes that send updates to the brain at much higher frequencies than our eyes do is of no value if the brain cannot process that information equally quickly.

“Hence, this work highlights the impressive capabilities of even the smallest animal brains. Flies might not be deep thinkers but they can make good decisions very quickly.”

Some fishes live from cleaning other fishes: they extracts debris, clean the skin, benefitting those they clean. However, they can cheat, by stealing some protective mucus from the host they clean. That hurts the hosts, who dislike this very much, and may react very nastily. Still, mucus is good.

So the cleaning fishes have to carefully distinguish among their clients. There are basically three cases visiting the cleaning station: predators, residents, and visitors. It goes without saying that they deliver impeccable service to predators. A satisfied predator does not gobble its servants.

Residents are sedentary fishes living in the neighborhood: mucus stealing is big with those: where are they going to go? Visitors: one has interest that they would come back, so one treats them more deferentially, lest they go visit another service station.

Thus one can see that tiny modest cleaner fishes have economic principles as developed as American economists. There is no way that’s innate: tiny fishes observe, and deduce. Intelligence is everywhere, even among the tiny ones.


Instinct As Fast Learning solves the nature-nurture problem. It also shows something else, even more important. It shows that the force of nature makes not just the force, but even the very geometry, of our minds.

(The construction of neuromorphology itself being forced by feedback from nature.)

The minds of sentient species, from bees to hummingbirds, are exquisitely tuned to be programmed by the (part of) nature they are made to respond to, all the way to the speed of time they need.

If we kill the environment, we kill out instruction set. The usual reason given to save the environment is that we would not want our descendants to live in a bad world. But what we see now is that a poor world gives poor minds, and that even time may go askew. Another, deeper than ever, reason to be a fanatical ecologist. Nature is not just our temple. Nature is where, and how, time itself is built, one neurological impulse at a time.


Patrice Ayme

Tags: , , ,


  1. Paul Handover Says:

    Haven’t read the essay yet, dinner being called in 10 minutes. But just wanted to offer this neurological reaction: I am drafting a post to come out on Learning from Dogs this friday. It’s title: Instinctive behaviours! 🙂


    • Patrice Ayme Says:

      Ach so. Interesting coincidence as that essay was in preparation for a while (“Gene Obsession” was extracted from it!)… Achtung Minen… Apparently I am in a good position to interfere… I could have said more, and I guess I will, after you object…


      • Paul Handover Says:

        OK, just finished reading it. My initial reaction is one of extreme gratitude for the learning I received. At the risk of this sounding like a mutual ‘love-in’ all that you write makes perfect sense, well it does to this non-scientist. I will refer to parts in my own essay coming out tomorrow.


        • Patrice Ayme Says:

          Thanks Paul! BTW, I do believe that the insistance, upon the difference, often found, between “scientists” and “non-scientists” is often unwarranted (I am sure our strangely silent friend Chris Snuggs would roar his approval there).

          For example a substantial proportion of physicists BELIEVE in universes expanding from nothing (or, more exactly, quantum fluctuations). Why? Because that’s the mark of the herd. Even then there are 2 cases: those who believe, knowing the herd is crazy, and those who truly believe it. And the question is: what makes them more “scientist” than a priest who believe in a god?

          Other example: say you are sent back to 1840 England: surely you could go to Oxbridge and preach to them the theory of evolution of Lamarck. And find reasons why it’s true. So you would have become a scientist?

          Science is about what’s known. When one has some of what’s known, we are scientists. So, indeed, we have a society of scientists, and denial is the problem.

          Refer away, you are more than welcome!


  2. bowtiejack Says:

    Kudos Patrice, kudos! Just great stuff.
    It sure makes sense to me.

    What I love about knowledge is it’s like an infinite onion – peel off one layer and it turns out there’s another one underneath.

    For instance, everyone thought Newton had figured everything out and it turned out there were a few loose ends.

    My favorite example of that sort of thing is Michelson-Morley putting the whole ether thing to the sword.

    Anyway, the paradigm you’ve pulled together here leaves me in awe. Seriously. Everybody! Another round of kudos.


    • Patrice Ayme Says:

      Thanks Bowtiejack! I am glad you like it! Thanks for the kudos! I have been thinking about that forever. And there is more to be said. Indeed, knowledge is everywhere. Even people in need of psychiatric care become crazy in different ways, according to the culture, the knowledge out there, they have exposed to.
      Like the poor woman who was shot yesterday, who, supposedly, though Obama “stalked her”… Well “stalking” is a USA twist on a notion found before with, say, witches. 3 centuries ago, people would have said she thought Obama ‘bewitched’ her…

      Honest scientists are honest about the loose ends. Newton was very clear that his theory of gravitation, pushed to the limits, was absurd (or words to this exact effect). That’s better, much much better than some contemporary scientists who, be it in physics or biology have come up with absurd statements unsupported by evidence (basically those absurdities were crushed in biology, so biologists are now properly humble and OK; but in physics/cosmology, blatant absurdities are all over, and soil the real science by entangling the highly certain with the fantasmagoric…).

      Anyway, thanks again! For the second round of kudos!


      • bowtiejack Says:

        As you say “people go crazy in different ways”.

        I don’t know if you’re familiar with the adventures of the actor Randy Quaid and his wife the last couple of years, but I tripped across a reference to it (you can just Google it, lots of articles). The more I read, frankly the more amazed I am that nobody is calling it what it clearly seems to be, which is a classic case of folie a deux.


        • Patrice Ayme Says:

          Sorry, don’t know him. (But i can’t wait!) I am scrambling to polish something I put on “The Stone” the NYT internal philosophical site, which published me within seconds (I guess they like my philo better than my stand on ASSad! hahaha). Also have got to pick up my daughter at school.

          But I do know that “People” style stories can be highly enlightening. That’s why I read tons of history (it’s generally about celebrities conspiring in the craziest ways!)


  3. Instinctive behaviours. | Learning from Dogs Says:

    […] Patrice Ayme’s blog there was a post published yesterday on the same theme.  It was called Instinct is Fast Learning.  Here’s an […]


  4. Dominique Deux Says:

    Hello Patrice, I am left scratching my head.

    No doubt some behavior commonly ascribed to instinct relies on, or makes some use of, learning. But making it a general rule sounds like “esprit de système”, the bane of scientists at any time.

    I fear much of the argument here rests on an unstated semantic confusion between instinct and reflex. Instinct means inherited; reflex means no involvement of the central nervous system (and therefore thought). Learned reflexes are a dime a dozen. So are unlearned ones.

    Most behaviors draw on both sources in a complex mix. A gunslinger’s skill is acquired yet requires natural ability. Is racism an inherited trait (selected through the advantage it gave bigots over pinko liberal tribes, who got eaten early in the prehistorical process), or a result of education? as we say in French, “les deux, mon général”. IMHO of course.

    I am even more doubtful about the argument of quickness of learning being made available to smaller animals on account of their size. First, there is every evidence that arthropods rely much more on instinct than, say, vertebrates. The idea of slow or quick subjective time strikes me as explaining very little. A fly does not enjoy the luxury of cramming an university cursus within a month or so! Where time (or rather, longevity) plays a part is in deciding if a given behavior is best transmitted by learning (supple, adaptive, slow, a luxury only long-lived species can afford) or instinct (ready to use at birth, but adaptive only over generations,). Both choices make evolutionary sense, which is why we have both, and a mix of both.

    Of course this begs the question of why some animals are short-lived or long-lived. We know that death and lifespan are acquired traits selected by evolution; the initial status of life was immortality. But that’s straying far from your subject.

    Sorry for this unhelpful ramble.


    • Patrice Ayme Says:

      Dear Dominique: No, no, no, let me beg to disagree, it’s a very helpful ramble. I was waiting for your answer (as you have studied Fabre!)

      My essay, although very long in the making conceptually, is not perfect. I wanted to go back and change some words (will do that probably today). Other (French) people told me they could not read it, the English and thoughts were…too hard.

      Also, it’s very ambitious: the general claim, if correct, would replace the Dawkins’ style, gene centric approach with a LEARNING APPROACH.

      You give your self the example of reflexes, which you say are learned, although they don’t involve “thought”. Yes, well, What’s thinking? Descartes thought he knew thought, though I think he knew thought nought. Tough dough for thought. Does Aplysia think? Yes!

      Nietzsche thought we thought with our stomachs (perhaps following Napoleon who walked on his stomach…) That was good intuition.

      In my reasoning there were two axes:
      1) Time in slow motion for critters.
      2) The very nature of neurological self assemblies. I could have given here the example of tiny self assembled human brains made from stem cells (the latest). Those readily offer the possibility of experiments: I am SURE they can learn (ethical problems then ought to appear).

      Anyway, from this very nature of a tiny brain, only a few things can be learned. For example we knew nothing about Ultra Violet flowers (until very recently), because our protenomics (“genes”) does not allow us to pick UV. But bees can learn from UV (recognize flowers and landmarks we can’t see, and learn from, as they do!).

      This dimensional reduction means that there is less to learn… and slow mo time will give even more time to learn: take Aplysia Californica. Kandell got the Nobel for exploring… Aplysia learning (that’s my zero order memory of it). Aplysia has, I think, just 600 neurons…

      Basically I replace instructions from genes by instructions from the world into compact lower dimensions (it’s kind of the basic idea in GUTs, going the other way…)


  5. Dominique Deux Says:

    Thanks for the kind words Patrice but I still say you sound (to the uneducated ear) as dogmatic about the universality of learning, as mainstream science sounds about the prevalence of instinct. The more you look into specific species’ behaviors, the more you must admit that no single mechanism can account for their inheritance, build-up and adaptation.

    Many animals have an instinctive urge to mate, yet reflexively kill or avoid fellow species members. Evolution’s answer? mating rituals. Goes for spiders and prom queens.

    Of course Aplysia (the Spanish Dancer) can learn. Why not. Learning can even be spread from one flatworm to another by cannibalism. Complexity and multisourcing are the key words. All currently living species have had the same time to evolve as we have. A fly or an octopus (Aplysia’s close relative) are every bit as “evolved” as we are. The idea of man as the upper level, the proud driving edge of evolution, is grossly anthropocentric. It could very well be an evolutionary dead end. My younger son wanted to be a killer whale and he had a point.

    One thing I completely concur about is the daft body of pseudo-thought which has arisen around the idea of a strategy of the genes. You routinely read (and hear being taught in school) that animals’ reproductive behaviors stem from their genes’ ultimate objective to spread ad infinitum. Most ethology is contaminated by that obvious fallacy, which explains every single behavior (aggression, altruism, etc.) from the standpoint of competitive offspring production. Lions are supposed to kill their newly acquired females’ cubs in order to make room for their own gene pool; alpha males hog females to spread their genes, and so on. Since the very notion of genes is brand new among humans, and even the idea of a correlation between sex and reproduction is far from universal among modern human groups, ascribing such lofty strategies to animals (and plants!) is preposterous. Genes are part of what we (mosquito or philosopher) are, they’re not what we are.

    Animal learning can teach us a lot – from mnemotechnic rhymed verse among whales to geometrical navigational language among bees. But instinctive behaviors are denied only at our own peril. Like corpuscle and wave in the photon, instinct and learning are two sides of a same coin.


    • Patrice Ayme Says:

      Dear Dominique: “Like corpuscle and wave in the photon, instinct and learning are two sides of a same coin.”
      Well, I would leave the Quantum out of this… And the photon is not a coin. Actually it’s not clear what a coin is, or is even possible… Although…

      My point was that what looks like instinct is actually learning. One needs a definition of both. Instinct is any behavior peculiar to a species that does not LOOK learned.

      And what’s learning?
      Any input from the world that leaves a trace.

      So can the genetic machinery learn? Yes, sure, that’s what Lamarckism was all about. And now we have four mechanisms for it.

      Anyway, I am writing a full essay about this. So your input (scathing criticism wanted!) is more than welcome!


  6. Sue Dreamwalker Says:

    We are born with instincts and our Animal Kingdom follow them daily… We no longer seem to connect with our instincts as much as we should…. relying on external information rather than those little gut feelings that if we were honest all still have, but often we shrug them off as silly thoughts…
    It may be we do not need them as much in our modern day world than say if we needed to rely upon them to survive out in nature… Many have detached from those inner thoughts and gut instincts which is a shame.. Because once we learn to embrace them and ‘Feel’ with our senses, we then connect back to those instincts, we then see how we are given help along the way in the form of ‘Signs’ .. Once we tap into this area again we begin to see how connected we really are…


    • Patrice Ayme Says:

      Sue: I have a daughter who just turned four, and I learned that she learned to fear. And that’s very good.

      It’s well known, from observations of animals that the fight/flight answer is learned. Entire species were exterminated when the animal culture of fearing man was not learned in a timely manner. In wild Africa, where I lived, knowing what animals knew about humans was the essence of safety.

      The same was found recently in the state of Washington, USA, with mountain lions; by shooting wise dominant males, who kept discipline, and instruction about proper behavior relative to humans and human property, mountain lion culture was blown to bits(it’s all over the latest issue of AAAS Science magazine).

      Thus opening a massive program of mountain lion hunting, incidents were actually augmented, and mayhem ensued (ignorant teenage lions took over).


  7. Paul Handover Says:

    Had to look it up but Eleanor Roosevelt’s quote seems an apt reply to your thank-you comment. Namely: “It is better to light a candle than curse the darkness.” And there’s a hell of a lot of darkness about just now! So your flame is valuable; to the extreme.


  8. Patrice Ayme Says:

    There are many hormones and neurohormones involved in breast feeding. Still, it’s behavior learned on both sides. And not always successfully. Similarly, the motherly instinct is more a chemical tendency than a fatality. It is (more than) helped by learning.


  9. Rewilding Us. | Some of Patrice Ayme's Thoughts Says:

    […] something that obviously infuriated him. He was torn between making the human into dinner, and the instinct that this would turn badly for […]


  10. Let there be lions. | Learning from Dogs Says:

    […] something that obviously infuriated him. He was torn between making the human into dinner, and the instinct that this would turn badly for […]


  11. gmax Says:

    Amazing thing is that butterflies can learn. For example if one feed them, they become tame…


    • Patrice Ayme Says:

      Yes, I have noticed this. If one feeds them, and they get used to it, they let themselves approach very closely, much closer than butterflies let themselves approach in the wild. strange that this has not been noticed; it shows that, even in animals, insects, that live only a few weeks, learning is major, and inherited (?) knowledge not a factor.


  12. We must rewild! | Learning from Dogs Says:

    […] something that obviously infuriated him. He was torn between making the human into dinner, and the instinct that this would turn badly for […]


  13. Animal Minds, As NATURE IS NURTURE | Patrice Ayme's Thoughts Says:

    […] I pushed that point of view further in “Instinct Is Fast Learning”. […]


  14. Time Flies For Flies | Patrice Ayme's Thoughts Says:

    […] I developed my idea that “INSTINCT IS FAST LEARNING.” […]


  15. DIVING INTO TRUTH | Patrice Ayme's Thoughts Says:

    […] 1: Science Is What Works, INSTINCT IS FAST LEARNING, and TRUTH AS ENERGY contain elements of the preceding, while developing further other […]


  16. Thailand Resorts Says:

    Do you mind if I quote a couple of your articles as long as I provide credit and sources back to your site?
    My blog site is in the very same area of interest as yours and my users would really benefit
    from a lot of the information you provide here. Please let me know if this alright with you.
    Appreciate it!


  17. MOODS RULE THOUGHTS | Patrice Ayme's Thoughts Says:

    […] such as “care”, and the like? Or do we learn? I believe we learn (much of this being fast learning, and, mostly, subconscious). How does that work? Well, it would work from General […]


  18. Bees Learn From Culture & Experience | Patrice Ayme's Thoughts Says:

    […] This comforts a long-held opinion of mine. See: […]


What do you think? Please join the debate! The simplest questions are often the deepest!

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: