Posts Tagged ‘Arrow of Time’

QUANTUM ENTANGLEMENTS MAKE TIME AN ARROW

May 19, 2017

Through Wave Collapse and the ensuing Entanglements it sometimes brings, QUANTUM PHYSICS CREATES A CAUSAL STRUCTURE, THROUGHOUT THE UNIVERSE, THUS, AN ARROW OF TIME.

Actually it’s more than a simple causal structure: it is an existential structure, as localization creates materialization, in the (Sub-)Quantum Theory I advocate. (It’s a theory where there are no dead-and-alive cats, but particles in flight are not particles… Contrarily to what Einstein thought, but more along the lines of Niels Bohr, horror of horrors…) It also means that time, at the smallest scale, is a nonlocal entanglement. This is not a weird new age poetry, but pretty much what the raw formalism of Quantum Physics say. I throw the challenge to any physicist to contradict this in any way. It’s completely obvious on the face of it.

You read it here first, as they say (although I may have said it before). Is time absolute? How could time be absolute? Where does the Arrow Of Time (Eddington) come from? Is there something else which grows with time?

The old answer is entropy, traditionally denoted by S.

Boltzmann’s equation S = k log P says that entropy augments during the evolution of a system. P indicates the number of states accessible by the system. Entropy was a construction from later Nineteenth Century physics, a successful attempt to understand the basic laws of thermodynamics (mostly due to Carnot).

A big problem for classical thermodynamics: what’s a state? That’s not clear.

However Quantum Physics define states, very precisely. However, very specifically: a situation, defined in space-time, what Bohr and Al. called an “experiment” (rightly so!) defines a number of possible outcomes: the latter become the “states”, a basis for the Hilbert Space the “experiment” defines.

Classical statistical mechanics does not enjoy such precisely defined states. So why not to use the states of Quantum Physics? Some could object that Quantum “experiments” are set-up by people. However Quantum Interactions happen all the time, independently of people. As in the Quantum experiments set-up by people, those Quantum Interactions grow something: Quantum Entanglement. ( Self-described “Quantum Mechanic” Seth Lloyd from MIT has also mentioned that entanglement and the arrow of time could be related.)

Quantum Entanglement has a direction: from where singularization (= localization = the collapse of the Quantum wave packet) happened first, to the distant place it creates the geometry of (yes, entanglement creates geometry, that’s why it’s so baffling to specialists!) 

Quantum Physics, Or, More Precisely, What I call QUANTUM INTERACTIONS are irreversible processes. Hence the Arrow Of Time

So we have two things which grow, and can’t be reversed: Time and Wave Collapse/Quantum Entanglement. I propose to identify them. (After all, Maxwell proposed to identify electromagnetic waves and light, just because they are both waves and went at the same speed; it turned out to be a magnificent insight.)

Quantum Wave function collapse is time irreversible (actually, the entire Quantum Wave deployment is time irreversible, because it depends only upon the geometry it’s deployed in). The mechanism of wave function collapse is philosophically a matter of often obscure interpretations, and arguably the greatest problem in physics and philosophy.

My position here is perfectly coherent: I believe the Quantum Waves are real. (So I do not believe the waves are waves of ignorance, and an artefact, as some partisans of Quantum decoherence have it). Those objective waves are real, although not always in one piece (that’s how I generate Cold Dark Matter).

By the way, it is the collapse of the Quantum Wave which “creates” the Quantum Entanglement At least that’s how the mathematics, the description of the theory has it! The picture it creates in one’s mind (first the wave, then the collapse, then the entanglement) makes sense. Actually I am arguing that this is how sense makes sense!

Quantum Entanglement is a proven experimental fact. All physicists have to agree with that. Thus the Quantum Wave has to be real, as it is the cause of the Quantum Entanglement! (I am pointing out here that those, and that’s now nearly all of them, who believe in Entanglement are incoherent if they don’t believe in the wave too!).

Jules Henri Poincaré had seen that time and space were not equivalent. That was meritorious, as Poincaré had proposed the original ideas of “local time” and “local space” theories, which are the fundamental backbones of Special Relativity (they are deduced from the constancy of the speed of light).

Even Einstein publicly frowned on the concept of “spacetime”, which identifies space and time; “spacetime” was proposed by Minkowski, Einstein’s own professor at the EHT… They may not have been friends, as Minkowski compared Einstein to a “lazy dog”; Einstein, of course, respected Poincaré so much, that he grabbed the entire theory of Relativity from him, including its name…

Quantum Physics does not outright treat time as equivalent to space, quite the opposite (although Quantum Field theorists have tried to, and do treat space and “imaginary time” as the same!). In fundamental Quantum Physics, time is a one parameter group of transformation, not really a dimension.

When a glass falls and shatters, Classical Mechanics is at a loss:’Why can’t it reassemble itself, with as little work?” Classical Thermodynamics mumbles:’Because Entropy augments’. (That may be a tenable position, but one will have to count the states of the glass in a Quantum way. Even then, the full energy computation will reveal a lack of symmetry.)

I say, simply:’A glass which has shattered can’t be reassembled, because Quantum Interactions, and ensuing entanglements happen.’ The resulting topology of cause and effect is more complicated than what one started with, and can’t be reversed. Quantum Interactions and ensuing effects at a distance they provide with, create a partial, nonlocal, ordering of the universe. Time. (Once a set has been physically defined, it has been thoroughly interacted with, Quantum Mechanically, and then it becomes a “well ordering”!)

So what’s time? The causal structure of the universe as determined by irreversible, causal Quantum Wave collapse and Quantum Entanglement.

Patrice Ayme’

Advertisements

QUANTUM FLUCTUATIONS & ARROW OF TIME

January 18, 2016

What is time? Quantum Physics gives an answer, classical physics does not. Quantum Physics suggests that time is the set of all irreversible processes. This is a world first, so it requires some explanations. I have been thinking, hard, of these things all my life. Sean Carroll, bless his soul, called my attention to the new development that mainstream physicists are starting to pay attention to my little kingdom(so I thank him).

***

SCIENCE IS WHAT WE DO:

Sean Carroll in “Quantum Fluctuations”:

“Let’s conjure some science up in here. Science is good for the soul.”

Patrice Ayme’: Why is science good for the soul? Because the human soul is centered on finding truth. Science is truth, thus science is human. Nothing is more human than science. Science is what humans do. Another thing humans do is art, and it tries to both duplicate, distort, and invent new nature, or interpretations, interpolations, and suggestions, of and from, nature:

Claim: Quantum Interference Is An Irreversible Process, Time's Arrows All Over. Quantum Interference Goes From Several Waves, To One Geometry. Soap Bubbles Brim With Quantum Interference..

Claim: Quantum Interference Is An Irreversible Process, Time’s Arrows All Over. Quantum Interference Goes From Several Waves, To One Geometry. Soap Bubbles Brim With Quantum Interference..

SC: …what are “quantum fluctuations,” anyway? Talk about quantum fluctuations can be vague. There are really 3 different types of fluctuations: Boltzmann, Vacuum, & Measurement. Boltzmann Fluctuations are basically classical: random motions of things lead to unlikely events, even in equilibrium.

Patrice Ayme’: As we will see, or we have already seen in my own “Quantum Wave”, Quantum Fluctuations are just the Quantum Waves. Richard Feynman, at the end of his chapter on entropy in the Feynman Lectures on Physics, ponders how to get an arrow of time in a universe governed by time-symmetric underlying laws. Feynman:

“So far as we know, all the fundamental laws of physics, such as Newton’s equations, are reversible. Then where does irreversibility come from? It comes from order going to disorder, but we do not understand this until we know the origin of the order. Why is it that the situations we find ourselves in every day are always out of equilibrium?”

Patrice Ayme’: Is that really true? Are equations time-symmetric? Not really. First, equations don’t stand alone. Differential equations depend upon initial conditions. Obviously, even if the equations are time-symmetric, the initial conditions are not: the final state cannot be exchanged with the initial state.

Quantum Physics make this observation even more important. The generic Quantum set-up depends upon a geometric space S in which the equation(s) of motion will evolve. Take for example the 2-slit: the space one considers generally, S, is the space AFTER the 2-slit. The one before the 2-slit, C, (for coherence) is generally ignored. S is ordered by Quantum interference.

The full situation is made of: (C, S & Quantum interference). it’s not symmetric. The Quantum depends upon the space (it could be a so-called “phase space”) in which it deploys. That makes it time-assymmetric. An example: the Casimir Effect.

***

QUANTUM PHYSICS IS ABOUT WAVES:

Sean Carroll: “Nothing actually “fluctuates” in vacuum fluctuations! The system can be perfectly static. Just that quantum states are more spread out.”

Indeed. Quantum states are, intrinsically, more spread out. They are NON-LOCAL. Why?

One has to go back to the basics. What is Quantum Physics about? Some, mostly the “Copenhagen Interpretation” followers, claim Quantum Physics is a subset of functional analysis. (The famous mathematician Von Neumann, one of the creators of Functional Analysis, was the founder of this system of thought; this scion of plutocrats, famously, yet satanically, claimed that De Broglie and Bohmian mechanics were impossible… Von Neumann had made a logical mistake; maybe that had to do with being involved with the satanic part of the American establishment, as, by then, that Hungarian had migrated to the USA and wanted to be called “Johnny”!).

The Quantum-as-functional analysis school became dominant. It had great successes in the past. It allows to view Quantum Physics as “Non Commutative Geometry”. However, contrarily to repute, it’s not the most fundamental view. (I have my own approach, which eschews Functional Analysis.)

But let’s backtrack. Where does Quantum-as-functional-analysis come from? A Quantum system is made of a (“configuration”) space S and an equation E (which is a Partial Differential Equation). Out of S and E is created a Hilbert Space with a basis, the “eigenstates”.

In practice, the eigenstates are fundamental waves. They can be clearly seen, with the mind’s eye, in the case of the Casimir Effect with two metallic plates: there is a maximal size for the electromagnetic wavelengths between the plates (as they have to zero out where they touch the metal).

The notion of wave is more general than the notion of eigenstate (Dirac pushed, successfully, the notion of wave so far that it created space, Spinor Space, and Quantum Field Theory has done more of the same, extending the general mood of De Broglie-Dirac to ever fancier Lagrangians, energy expression guiding the waves according to De Broglie scheme).

Historically, De Broglie suggested in 1923 (several publications to the French Academy of Science) that to each particle was associated a (relativistic) wave. De Broglie’s reasons were looked at by Einstein, who was impressed (few, aside from Einstein could understand what De Broglie said; actually De Broglie French jury thesis, which had two Nobel prizes, was so baffled by De Broglie’s thesis, that they sent it to Einstein, to ask him what he thought. Einstein replied with the greatest compliment he ever made to anyone: “De Broglie has started to lift the great veil,” etc…).

The De Broglie’s wave appears on page 111 of De Broglie’s 1924 thesis, which has 118 pages (and contains, among other things, the Schrödinger wave equation, and, of course, the uncertainty principle, something obvious: De Broglie said all particles were guided by waves whose wavelengths depended upon their (relativistic) energy. An uncertainty automatically appears when one tries to localize a particle (that is, a wave) with another particle (that is, another wave!)

***

CLASSICAL PHYSICS HAS NO ARROW OF TIME:

Consider an empty space S. If the space S is made available to (classical) Boltzmann particles, S is progressively invaded by (classical) particles occupying ever more states.

Classical physicist (Boltzmann, etc.) postulated the Second Law of Thermodynamics: something called entropy augmented during any process. Problem, rather drastic: all classical laws of physics are reversible! So, how can reversible physics generate a time-irreversible law? Classical physicist have found no answer. But I did, knight in shining armor, mounted on my powerful Quantum Monster:

***

QUANTUM PROCESSES CREATE IRREVERSIBLE GEOMETRIES:

When the same space S is made available as part of a Quantum System, the situation is strikingly different. As Sean Carroll points out, the situation is immediately static, it provides an order (as Bohm insisted it did). The observation is not new: the De Broglie waves provided an immediate explanation of the stability of electronic waves around atoms (thus supporting Bohr’s “First, or Semi-Classical, Quantum Theory”.

What’s a difference of a Quantum System with a classical system? The classical system evolves, from a given order, to one, more disordered. The Quantum system does not evolve through increasing disorder. Instead, the space S, once accessed, becomes not so  much an initial condition, but a global order.

The afore-mentioned Hilbert Space with its eigenstates is that implicit, or implicate (Bohm) order. So the Quantum System is static in an important sense (from standing Quantum Waves, it sorts of vibrates through time).

Thus Quantum Systems have an intrinsic time-assymmetry (at least when dealing with cavities). When there are no cavities, entanglement causes assymmetry: once an interaction has happened, until observation, there is entanglement. Before interaction, there was no entanglement. Two classical billiards balls are not entangled either before or after they interact, so the interaction by collision is fully time reversible.

Entanglement is also something waves exhibit, once they have interacted and not before, which classical particles are deprived of.

Once more we see the power of the Quantum mindset for explaining the world in a much more correct, much simpler, and thus much more powerful way. The Quantum even decides what time is.

So far as we know, all the classical fundamental laws of physics, such as Newton’s equations, are reversible. Then were does irreversibility come from? It does NOT come, as was previously suggested, from order going to disorder.

Quite the opposite: irreversibility comes from disorder (several waves)going to order (one wave, ordered by its surrounding geometry). And we do understand the origin of the order: it’s the implicit order of Quantum Waves deployed.

You want to know the world? Let me introduce you to the Quantum, a concept of wealth, taste and intelligence.

Last and not least: if I am right, the Quantum brings the spontaneous apparition of order, the exact opposite picture which has constituted the manger in which the great cows of physics have found their sustenance. Hence the fact that life and many other complicated naturally occurring physical systems are observed to create order in the universe are not so baffling anymore. Yes, they violate the Second Law of Thermodynamics. However, fundamentally, that violated the spirit, the principle of the universe, the Quantum itself.

Patrice Ayme’