Posts Tagged ‘Local time’

Earth’s Core Is Younger Than Its Crust

May 30, 2016

Inner parts of the Earth are younger than the surface by an appreciable amount. Richard Feynman made this point first. But he underestimated the effect by a factor of 100 times! As the Danes who just discovered that put it: “The pedagogical value of this discussion is to show students that any number or observation, no matter who brought it forward, must be critically examined”.

Local Time is a theory invented by Poincaré, to make sense of Lorentz’s work. Local Time became famous when Einstein, a German, advertised it, and was himself advertised by Kaiser nationalists such as Max Planck. A gravitational field slows down (Local) Time. (The proof is easy.)

Notice that the core itself has no gravitation. So actually the slowing down of light clocks is a function of depth. Local time really slows down.

Local time, as given by light clocks, has to be the same as local time given by the weak force (radioactive decay). If not, one could tell absolute motion easily from the inside the bowels of the ship lab. That would contradict the Principle of Relativity.

I have argued for decades that the Cosmic Background Radiation gave an absolute frame. However, the situation is a bit more subtle than that. Galileo argued that a laboratory in the bowels of a ship cannot provide an indication of motion (as long as one does look outside!)

I recently dug around and found the argument came initially from bishop Oresme, a student and collaborator of Buridan. Both were major philosophers, mathematicians and physicists of the Fourteenth Century in Paris. Oresme considered the principle of relativity self-obvious (to “intelligent” persons). However that was as long as one was in the bowels of a ship, and not looking at heavenly bodies. Oresme explicitly said. Because Oresme argued the diurnal motion of Earth around itself could not be detected inside a lab (many centuries later, five centuries later, more exactly, that turned out to be false: consider Foucault’s pendulum, 1851 CE).

So can we find a sort of Foucault pendulum for absolute linear motion? General Relativity insists on what Newton already knew: the Earth falls around the Sun. Can we detect this rotation inside a mine, 2 kilometers down? In theory, yes: the CBR will slow down the Earth sometimes, and push it, at other times. A supersensitive accelerometer could detect that.

Nor can we do away with the likes of a CBR like reference frame. The simple fact that there are galactic clusters all around and they generate the gravitational field defines a state of rest relative to it.

The formalism of Quantum Physics already has an absolute time for all to see. That absolute time is what enables the non-local effects.

So is physics finished? No. Will the philosophical approach help? Of course (roll over, Feynman, go back to your faulty computations!). It took 32 years for physicists to realize that the potential was on the right side of the De Broglie-Schrodinger equation of 1924… That provided immediately with (the idea for) an experimental confirmation, the Bohm-Aharanov effect…
Patrice Ayme’

ianmillerblog

There was a rather interesting announcement recently: three Danes calculated that the centre of the earth is 2.5 years younger than the crust ( U I Uggerhøj et al. The young centre of the Earth, European Journal of Physics (2016). DOI: 10.1088/0143-0807/37/3/035602 ). The concept is that from general relativity, the gravitational field of earth warps the fabric of space-time, thus slowing down time. This asserts that space-time is something more than a calculating aid and it brings up a certain logic problem. First, what is time and how do we measure it? The usual answer to the question or measurement is that we use a clock, and a clock is anything that has a change over a predictable period of time, as determined by some reference clock. One entity that can be used as a clock is radioactive decay and according to general relativity, that clock at the core…

View original post 829 more words

Poincaré: LOCAL TIME Implies MASS = ENERGY

March 29, 2016

Historically three functions were attributed to time: simultaneity, synchronization and duration. Time became important in physics even before Galileo analyzed how gravity could be diluted by using a slope. Middle Age mathematicians made the first differential calculus computations using time, two centuries before Fermat established calculus.

Newton used calculus for his detailed theory of gravitation. However Isaac thought his own theory made no sense. The problem was that gravity was supposed to act instantaneously at a distance. Isaac thought that it is inconceivable that inanimate Matter should, without the Mediation of something else, which is not material, operate upon, and affect other matter without mutual Contact…That Gravity should be innate, inherent and essential to Matter, so that one body may act upon another at a distance thro’ a Vacuum, without the Mediation of any thing else, by and through which their Action and Force may be conveyed from one to another, is to me so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it.”

— Isaac Newton, Letters to Bentley, 1692/3

Poincaré: Time Is Local, MASS = ENERGY, Yet Relativity Is Not Fully Relative

Poincaré: Time Is Local, MASS = ENERGY, Yet Relativity Is Not Fully Relative

[The picture actually alludes to a completely different work of Poincaré, his discovery that qualitative methods in non solvable differential equations produced results where exact differential equations a la Newton did not: in particular, Poincare’s recurrence theorem… Useful in astronomy.]

Newton’s theory depended crucially on an absolute, universal time: thus the gravity force vector could always point to the center of (the) mass (exerting the gravitational force).

However the wrapping up of the electromagnetic equations by Maxwell showed that light was electromagnetic field travelling at speed c. C was universal. And independent of any “rest frame”. After thinking about the problem for twenty years, Lorentz discovered that, for electromagnetic phenomena to stay the same in a moving frame, one had to introduce what Poincaré called a “Local Time”. Poincaré then pointed out that there was no absolute rest relative to an “ether”, all one could do was to analyze the motion of matter relative to matter.

Then Poincaré thought some more for five years, and published in 1900, in the major Dutch physics Journal, that electromagnetic field retardation and its violation of Newton’s Third Law (Action equals reaction) could be resolved by attributing the inertial mass E/cc to the electromagnetic field.

(Mass = energy was attributed to a number of second order German physicists for Francophobic and nationalistic reasons, and the notion is repeated to this day by ignorant parrots; that would be sort of funny, if it did not distort not just the history of physics, but even the understanding of physics, as the parrots tend to not have as deep an understanding the underlying concepts).

“The principle of relativity, according to which the laws of physical phenomena must be the same for a stationary observer as for one carried along in a uniform motion of translation, so that we have no means, and can have none, of determining whether or not we are being carried along in such a motion… From all these results, if they were to be confirmed, would issue a wholly new mechanics which would be characterized above all by this fact, that there could be no velocity greater than that of light, any more than a temperature below that of absolute zero. For an observer, participating himself in a motion of translation of which he has no suspicion, no apparent velocity could surpass that of light, and this would be a contradiction, unless one recalls the fact that this observer does not use the same sort of timepiece as that used by a stationary observer, but rather a watch giving the “local time.[..] Perhaps, too, we shall have to construct an entirely new mechanics that we only succeed in catching a glimpse of, where, inertia increasing with the velocity, the velocity of light would become an impassable limit. The ordinary mechanics, more simple, would remain a first approximation, since it would be true for velocities not too great, so that the old dynamics would still be found under the new” [Poincaré, 1904.]

So after Poincaré’s work, what was the situation? Time is local (yet clocks could be synchronized at a distance), Galilean relativity could be extended to electromagnetism as long as mass = energy.

Are we further along today?

Poincaré kept a distinction between “apparent time” and “ether” given time. Einstein’s variation of the theory does not preserve this distinction (and that makes it false, ha ha ha). I will not go into the details here, as it would be pure research of the sort that 99% of theoretical physicists are unwilling to consider (some other day, in simple words). I am not trying to spite Einstein, long my preferred physicist (no more, though, he has exhausted my patience with vindictive plagiarism, in particular against Poincaré and Karl Popper, let alone abandoning his little daughter). Actually Einstein admitted there was some sort of ether: …”we may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an ether. According to the general theory of relativity space without ether is unthinkable.” [Einstein, 1920.]

But there is much worse: we now know that Quantum Physics ignores Local Time. Quantum Physics brings back the instantaneous interaction at a distance which repulsed Newton. (At least, it appears instantaneous experimentally, so far, and it is certainly instantaneous in the existing Quantum formalism, which, amusingly, is in the same exact situation as Newtonian Physics: the Quantum as we know it today, cannot function without that instantaneous Quantum Interaction.

Whatever happens next, only one thing is clear; those who claim physics has been figured out, know very little, and should be advised to shut up, lest their  egregious statements confuse the public about the scientific method.

Patrice Ayme’

***

***

E = mcc? Here is my take on it:

The simplest idea to get to Energy = Mass, is that light has momentum (experiments and Poynting’s work on electromagnetism). Integrated (that is summed up) momentum transferred is… energy.

But also, upon emission of light, a recoil appears (Newton’s Third Law, and that is what it means that light has momentum). To keep the center of mass where it was prior (Buridan’s law, aka “Newton’s” First/Second Law), light needs to carry inertial mass (also gravitational, according to the equivalence principle)… Poincaré, no fool, has got to have been teaching that at the Sorbonne in 1899 (when he first publicized E = mcc)…

Time for Cause & Effect?

December 31, 2014

Cause, effect, and time are all mysteries at this point. As far as Physics is concerned.

When I was a young chicken, learning physics, pecking around the way chicken do, I came upon “the Arrow of Time”. At the time, the question about the nature of time was all about “Entropy” and the “Second Law of Thermodynamics”. How quaint it seems now that I got much wiser!

Entropy is about “states”. The “Second Law” says that processes augment the number of states, as time goes by.

The most basic question is then: ”What is a state?”

People in thermodynamics thought they had an answer. And, in a way, they do, like a car mechanics is full of answers about the state of your car.

Mechanics Getting Weirder: Are There Wormholes?

Mechanics Getting Weirder: Are There Wormholes?

[Yes, these distorted things are distant galaxies, viewed through the wormhole. The picture, from the excellent movie “Interstellar” depicts how a wormhole in spacetime would appear at close range; the little flower is the rotating spaceship. Interstellar represents an Earth where society has pursued its way down the abyss, thanks to the anti-science, anti-rationality movement in evidence nowadays. NASA went underground… Something not far removed from its present state, where tantalizing clues for life on Mars are left unexamined, because of the anti-nuclear movement… Long story, another time.]

However, nature is a Quantum car. And mechanics have nothing to say about it. Quantum Physics has its own notion of state. Moreover, in the meantime, the very notion of time and causality came under attack. From an unexpected corner.

It was simple enough when Lorentz and Poincaré introduced the notion of “local time”. Time was relative (Poincaré Relativity Principle, 1904): it depended upon one’s state of motion. In a local frame moving fast, time slows down (relative to the friend who did not get on that speedy rocket).

Einstein then observed that if a local time was accelerated, it would also slow down. Einstein somehow hoped to extract from this “General Theory of Relativity” a cause for inertia, but he failed (and could only fail, as GTR is local, not global). He ended up with just a Theory of Gravitation (Fock), a better and much improved version of the one of 1700, true… But still GTR is articulated basically the same equation arising from Ismael Bullialdus considerations in 1645 (and then Huygens, Borelli, Hooke, etc.)

Enter Quantum Physics. There time is absolute (oops). Locally absolute over an extent. Why? Because each Quantum processes are logically and mathematically analyzed in a particular space, relative to said process, and GLOBALLY therein (here is that global concept Einstein was desperately searching for, as he craved for inertia as a global phenomenon, following Newton and Mach).

That particular space relative to that particular process is not just two dimensional (as in the famed double slit experiment), it can be pretty much anything that can be depicted as a Hilbert space (consider Dirac Spinor space).

In the past, before 1904, one could consider that if something A preceded something else B, in time, A could have “caused” B. However local time already messes up with that situation (consider closed time loops in GTR; reference: just released movie Interstellar, a respected relativist, Thorne, made discoveries while consulting for the movie).

Quantum Physics makes causation a worse consideration than ever. As it stands, the Quantum is Non-Local. No need to get into Spin and Bell, to figure that one out: the analysis in Quantum Hilbert space uses time only as a one parameter transformation group, it’s intrinsically Non-Local (hence the famed “Collapse of the Wave Packet).

If a physicist changes a spin axis on Earth, does it do something to the second member of the entangled photon pair he sent to Beta Centauri? Instantaneously? Really? No one knows for sure (and I don’t believe the “instantaneous” part), but the present Quantum formalism (sort of) says it does.

Paradoxically, all of this debate about cause and effect has become very practical, in the most fundamental domain possible, Quantum Physics. As real physics moves away from the multiverse derangement syndrome, it ponders using, as nature and biology, and even evolution do, the Quantum.

Indeed, even biology uses the Quantum to compute, and find best solutions (as was demonstrated in the case of the chlorophyll molecule; much more examples are on the way, including that will demonstrate how a type of Lamarckian evolution works).

However “what causes what” has stood in the way of making Quantum Computers. Real physicists and engineers have been trying to get a handle on causation. One wants to isolate the process of computation, yet get it impacted by complicated inputs, and only these.

Time to spend some money on all this (that means re-direct the economy that way).

Patrice Ayme’