Inner parts of the Earth are younger than the surface by an appreciable amount. Richard Feynman made this point first. But he underestimated the effect by a factor of 100 times! As the Danes who just discovered that put it: “The pedagogical value of this discussion is to show students that any number or observation, no matter who brought it forward, must be critically examined”.

Local Time is a theory invented by Poincaré, to make sense of Lorentz’s work. Local Time became famous when Einstein, a German, advertised it, and was himself advertised by Kaiser nationalists such as Max Planck. A gravitational field slows down (Local) Time. (The proof is easy.)

Notice that the core itself has no gravitation. So actually the slowing down of light clocks is a function of depth. Local time really slows down.

Local time, as given by light clocks, has to be the same as local time given by the weak force (radioactive decay). If not, one could tell absolute motion easily from the inside the bowels of the ship lab. That would contradict the Principle of Relativity.

I have argued for decades that the Cosmic Background Radiation gave an absolute frame. However, the situation is a bit more subtle than that. Galileo argued that a laboratory in the bowels of a ship cannot provide an indication of motion (as long as one does look outside!)

I recently dug around and found the argument came initially from bishop Oresme, a student and collaborator of Buridan. Both were major philosophers, mathematicians and physicists of the Fourteenth Century in Paris. Oresme considered the principle of relativity self-obvious (to “intelligent” persons). However that was as long as one was in the bowels of a ship, and not looking at heavenly bodies. Oresme explicitly said. Because Oresme argued the diurnal motion of Earth around itself could not be detected inside a lab (many centuries later, five centuries later, more exactly, that turned out to be false: consider Foucault’s pendulum, 1851 CE).

So can we find a sort of Foucault pendulum for absolute linear motion? General Relativity insists on what Newton already knew: the Earth falls around the Sun. Can we detect this rotation inside a mine, 2 kilometers down? In theory, yes: the CBR will slow down the Earth sometimes, and push it, at other times. A supersensitive accelerometer could detect that.

Nor can we do away with the likes of a CBR like reference frame. The simple fact that there are galactic clusters all around and they generate the gravitational field defines a state of rest relative to it.

The formalism of Quantum Physics already has an absolute time for all to see. That absolute time is what enables the non-local effects.

So is physics finished? No. Will the philosophical approach help? Of course (roll over, Feynman, go back to your faulty computations!). It took 32 years for physicists to realize that the potential was on the right side of the De Broglie-Schrodinger equation of 1924… That provided immediately with (the idea for) an experimental confirmation, the Bohm-Aharanov effect…

Patrice Ayme’

There was a rather interesting announcement recently: three Danes calculated that the centre of the earth is 2.5 years younger than the crust ( U I Uggerhøj et al. The young centre of the Earth, *European Journal of Physics* (2016). DOI: 10.1088/0143-0807/37/3/035602 ). The concept is that from general relativity, the gravitational field of earth warps the fabric of space-time, thus slowing down time. This asserts that space-time is something more than a calculating aid and it brings up a certain logic problem. First, what is time and how do we measure it? The usual answer to the question or measurement is that we use a clock, and a clock is anything that has a change over a predictable period of time, as determined by some reference clock. One entity that can be used as a clock is radioactive decay and according to general relativity, that clock at the core…

View original post 829 more words